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Abstract

The deformation of polycrystalline aggregates is modeled using the �nite el-

ement method. Explicit discretization at the single crystal level is employed to

study the inhomogeneous deformations of individual crystals. Plastic deforma-

tion by crystallographic slip is treated using a constitutive model based on crystal

plasticity. The formulation is used to predict the non-uniform nature of strain

hardening and texture evolution in the crystals subjected to plane strain compres-

sion. The capability of the simulations to capture the inhomogeneous deformation

of individual grains during plastic deformation of polycrystals is demonstrated.

The hardness and orientation values of elements from the same grain evolve to

di�erent �nal values due to local inhomogeneities and interactions with neighbors.

The simulations provide a means to obtain quantitative information on the in-

homogeneous distributions of stored energy and orientations among the di�erent

crystals comprising the microstructure.

Keywords: �nite element method, mesoscale modeling, texture development,

crystal plasticity, inhomogeneous deformations

The submitted manuscript has been authored by

a contractor of the U.S. Government under con-

tract No. DE-AC05-96OR22464. Accordingly, the

U.S. Government retains a non-exclusive, royalty-

free license to publish or reproduce the published

form of this contribution, or allow others to do so,

for U.S. Government purposes.

�Corresponding author: Tel.: (423) 574-5147, Fax: (423) 574-7463, E-mail: sarmag@ornl.gov



1 Introduction

In metals deformed under cold working conditions, the increase in dislocation density

causes a portion of the work done to be retained as stored energy of deformation. The

stored energy is released during subsequent annealing by the processes of recovery and

recrystallization [1]. During recovery, the dislocations rearrange themselves into con-

�gurations of lower energy and form low angle boundaries. During recrystallization,

strain-free nuclei with high angle grain boundaries form and grow, leading to further

decrease in stored energy. These phenomena are of particular signi�cance in metals and

alloys subjected to thermo-mechanical processing, since the resulting microstructure is

determined by the processing variables. Predicting the microstructure resulting from

processing has been the subject of much research, but the models used for this purpose

do not incorporate all the parameters necessary for a complete quantitative description.

Modeling the kinetics and the evolution of the grain structure and texture during re-

crystallization requires knowledge of the non-uniform distributions of stored energy and

orientations in the cold worked material.

In this article, a novel �nite element formulation is presented for modeling the mi-

crostructural evolution during cold deformation of metals, that generates quantitative in-

formation on the stored energy and orientation distributions in the deformed microstruc-

ture. By means of explicit discretization of grains at the microstructural level, the �nite

element analysis permits modeling the inhomogeneous deformation of the grains to pre-

dict changes in grain shape, orientation and the non-uniform stored energy distribution.

In recent years, there have been several studies at the microstructural length scales,

where the deformation of polycrystals has been simulated using the �nite element method

[2{7]. These simulations proceed by discretizing an aggregate of grains and applying

boundary conditions corresponding to a homogeneous macroscopic deformation to the
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mesh. The inhomogeneous deformation of the aggregate is inuenced by the interac-

tions at grain boundaries, in addition to the di�erences in properties among individual

grains. By placing numerous elements in a single grain, it is possible to capture the

non-uniform deformation within a grain. By making use of a crystal plasticity model for

the constitutive response, these studies have been able to model the evolution of grain

orientation, and hence the development of crystallographic texture.

Harren and Asaro [2] studied a model two-dimensional polycrystal made up of rate

dependent planar crystals. Deformations of 27 crystals discretized with 40 � 56 quadri-

lateral elements in tension, compression and simple shear were simulated and compared

with predictions using a Taylor-type [8] model. The results of their simulations showed

the formation of macroscopic shear bands and sub-grains. Localized shearing and non-

uniform deformations occurred due to the nature of deformation by crystallographic slip,

and the inuence of grain interactions.

Becker [4] conducted a similar study using an idealized two-dimensional geometric

model deformed in plane strain compression. However, the material behavior in each

element was determined assuming an FCC crystal structure using a rate dependent

constitutive model. A mesh containing 60 � 24 quadrilateral elements was employed.

The results of the analyses reveal complex deformation patterns arising from grain in-

teractions, with both the overall texture and the spread of orientations within a grain

being inuenced not only by the orientations of the neighboring grains, but also by the

constraints provided by grains located several grains away.

Bronkhorst et al. [5] simulated the deformation of FCC polycrystals in a manner

similar to Becker [4]. Tension and compression were simulated using cubic mesh with

7 brick elements along each side, while a planar mesh of 20 � 20 elements was used

for plane strain compression and simple shear. The predicted textures using the �nite

element approach matched experimental data better than a Taylor-like model. Anand
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and Kalidindi [6] used the same approach to examine the e�ect of crystallographic texture

on the formation of shear bands during plane strain compression.

Becker and Panchanadeeswaran [7] conducted simulations of a planar section of poly-

crystalline aluminum deformed in channel-die compression. Their results showed the

inuence of grain interaction on local deformation and texture evolution.

While the above simulations were restricted to planar microstructures and relatively

coarse discretizations, with the help of parallel computing methods, some recent e�orts

have been able to treat fairly large three-dimensional meshes [9{11]. Beaudoin et al. [9]

employed a hybrid �nite element formulation to study the deformation of a polycrystal

under plane strain compression. The simulation used a 16 � 16 � 16 mesh of 8-noded

brick elements with one FCC crystal per element. The resulting texture evolution was

compared with other models and experimental data. It was shown that the �nite element

calculation leads to better match with experiment, for both the intensities and the

locations of texture components. Based on the same formulation, Sarma and Dawson [10]

simulated deformations of FCC polycrystals to examine the distribution of deformation

among the individual crystals. The results of the study showed that interactions among

crystals play a dominant role in the determining the spread of the applied deformation

among them.

Recently, Beaudoin et al. [11] examined the origin of possible nucleation sites for

recrystallization by simulating plane strain compression of model polycrystals. These

simulations employed fairly large three-dimensional meshes to study the heterogeneous

deformation of the individual crystals, and found that some of the elements rotated to

near cube orientations after heavy reductions.

The objectives of the current e�ort are two-fold. The �rst is to apply the �nite

element deformation model to a realistic microstructure. Previous e�orts using this

approach have been restricted to 2-D microstructures or 3-D models with special con�g-
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urations. This work constitutes the �rst attempt at simulating a fully three-dimensional

microstructure with discretization of individual grains. The second objective of this

work is to combine the deformation model with a recovery and recrystallization model.

Previous work at the microstructural length scale has focused on one or the other aspect

of processing. In this work, the deformation model is used to provide more realistic

initial data to the recrystallization model. The coupling of results from this study to

model recovery and recrystallization phenomena is described elsewhere [12].

In the following section, the �nite element formulation and the constitutive assump-

tions used in the present study are described. In Section 3, the application of the method

to simulate cold deformation to di�erent strains is discussed, and some results on the

stored energy and orientation distributions are presented. This is followed by some

closing remarks in Section 4.

2 Finite Element Formulation

The details of the �nite element formulation used for simulating the cold deformation are

available elsewhere [9], and only the main features are recalled here. It is assumed that

elastic deformations are negligibly small, and that deformation occurs by slip dominated

plastic ow of the material. Due to the limited modes of deformation available through

slip, the crystals must rotate to accommodate arbitrary deformations. The preferred re-

orientation of crystals leads to texture development, and is modeled using a constitutive

law based on crystal plasticity.

A viscoplastic constitutive law relates the rate of shearing _(�) to the resolved shear

stress � (�) on each slip system (�) [13{16]:

_(�) = _0

������
(�)

�̂

�����
1
m

sign(� (�)); (1)
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where m is the rate sensitivity parameter, and _0 is a reference rate of shearing. �̂ is a

hardness parameter which represents resistance to plastic deformation due to interactions

among dislocations. The resolved shear stress is the component of the traction along

the slip direction, and is obtained from the crystal deviatoric Cauchy stress �0

c
using the

Schmid tensor (dyadic product of the slip direction s(�) and the slip plane normal n(�)

vectors),

�
(�) = �0

c
n

(�) � s(�) = �0

c
� T (�) = �0

c
� P (�)

: (2)

In the above expression, P (�) is the symmetric portion of the Schmid tensor T (�), and

is used to express the crystal rate of deformation Dc as a linear combination of the slip

system shearing rates,

Dc =
X
�

_(�)P (�)
: (3)

The crystal rate of deformation is the symmetric part of the crystal velocity gradient,

and prescribes the rate of shearing of slip planes. The skew-symmetric part of the crystal

velocity gradientW c controls the rotation of the crystal, and contains contributions from

both the spin associated with the plastic ow, and the rigid rotation R� of the crystal

lattice necessary to maintain compatibility with neighboring crystals,

W c = _R�
R

�T +
X
�

_(�)Q(�)
; (4)

whereQ(�) is the skew-symmetric part of the Schmid tensor T (�). Rewriting equation (4)

results in the crystal reorientation rate _R�, given by the di�erence between the crystal

spin and the plastic spin due to slip,

_R� =

 
W c �

X
�

_(�)Q(�)

!
R

�
: (5)
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Eliminating _(�) between equations (1) and (3), and substituting equation (2) for

�
(�) leads to an expression for the crystal deformation rate in terms of the deviatoric

stress,

Dc =

2
4X

�

_0

�̂

������
(�)

�̂

�����
1
m
�1

P
(�) 
 P (�)

3
5�0

c
; (6)

or

Dc = Sc�0

c
; (7)

where Sc is the crystal \compliance" tensor. The rate dependence of equation (1) permits

inversion of equation (6), and expression of the crystal deviatoric stress under a given

deformation rate as

�
0

c
= S�1

c
Dc: (8)

The non-linear nature of the crystal constitutive equation (8) requires an iterative

method to compute the deviatoric stress for a given rate of deformation. The anisotropic

response due to the crystal orientation is reected in the crystal compliance.

The plastic deformation of the material is modeled in incremental fashion, by solving

the boundary value problem for material motion at each strain increment. Balance laws

for equilibrium and mass conservation are applied in conjunction with the constitutive

assumptions discussed above. Following the approach of Beaudoin et al. [9], a hybrid

�nite element formulation is employed for this purpose. Instead of developing the equi-

librium statement from balance of momentum at the global level, here it is written as

a balance of tractions at the inter-element boundaries. Weighted residuals are formed

on the equilibrium statement and the constitutive relation. A third residual on the con-

servation of mass (which for the case of incompressible plastic deformation reduces to a

divergence-free velocity �eld) completes the formulation. Interpolation functions are in-

troduced for the nodal velocities, element stress components and the pressure. A proper
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choice of the shape functions for the stress permits elimination of the stress degrees of

freedom at the element level. The result is a system of equations for the discretized

velocity �eld, which is solved assuming �xed material state and geometry.

Upon obtaining a converged velocity solution, the material state and geometry are

updated. The material is characterized by the orientation of the crystal and the hard-

ness parameter. The reorientation rate given by equation (5) is used to update the

orientation, while the hardness is evolved using a modi�ed Voce type law [16{18],

_̂� = H0

 
�̂s � �̂

�̂s � �̂i

!
_�; (9)

where hardening rate H0 and initial hardness �̂i are material parameters. _� is a measure

of the net shearing rate on all the slip systems,

_� =
X
�

��� _(�)��� : (10)

The saturation hardness �̂s based on the current slip system state is given by

�̂s = �̂s0

 
_�

_s

!m
0

; (11)

where �̂s0 , _s and m
0 are material parameters.

A few comments on the implementation of this formulation are in order. Devel-

opment of the material response entails solution of the non-linear crystal constitutive

relation for each element, and must be performed during each iteration for the veloc-

ity �eld at a given strain increment. In this respect, the methodology described above

proves to be computationally demanding. Use of the hybrid approach leads to intro-

duction of additional degrees of freedom for the crystal stresses, thereby adding to the

computational burden associated with the sti�ness calculations. The advantage of using
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this approach is the smoothness in the stress �eld, due to the enforcement of traction

balance at the element interfaces in an approximate sense [9]. This proves particularly

useful for situations where there are abrupt changes in material properties, as in the

case of boundaries between grains. In the �nite element context, the numerical integra-

tion required for computing the sti�ness matrix can be performed concurrently for all

elements. The choice of piecewise discontinuous interpolation functions for the stress

is a key feature of the formulation, which enables computation of the sti�ness matrices

in concurrent fashion for all elements [9]. In turn, this feature enables exploitation of

parallel computing technologies in order to greatly improve the feasibility of treating

large three-dimensional discretizations.

While the sti�ness computations are relatively straightforward to implement in a

parallel environment, the solution of the resulting system of equations poses a greater

challenge. Since direct solvers are di�cult to optimize on a parallel machine, it is advan-

tageous to use an iterative procedure, such as the conjugate gradient (CG) method [19].

In this context, enforcing the incompressibility constraint requires special attention, since

it degrades the numerical condition of the resulting system of equations. In the current

formulation, incompressibility is enforced using a modi�ed consistent penalty approach,

which seeks to decouple the solution for the pressure �eld from the conjugate gradient

method, as discussed by Beaudoin et al. [20]. A detailed discussion of the development

of a parallel version of the formulation using High Performance Fortran (HPF) for the

Intel PARAGON computer is available elsewhere [21].

2.1 Computation of Stored Energy and Orientation Data

The �nite element simulations make use of the orientation information of the crystals in

the form of Euler angles ( ; �; ') using the convention of Kocks [22]. At the end of the
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deformation, the resulting Euler angles of the elements were transformed to axis-angle

pairs for subsequent use in the Monte Carlo simulations. The stored energy values were

calculated based on the hardness parameters in each element. The evolution of the

hardness parameter and orientation of each element based on the deformation rate in

that element was computed using the equations discussed above.

It has been mentioned earlier that the hardness parameter �̂ represents resistance

to plastic deformation. It is hence taken to be proportional to the square root of the

dislocation density [23],

�̂ =
1

2
Gb�

1=2
; (12)

where G is the shear modulus of the material and b is the magnitude of the Burgers

vector. The stored energy (per unit volume) is given by the relation

H =
1

2
�Gb

2
: (13)

Equations (12) and (13) can be combined to write the stored energy in terms of the

hardness and the shear modulus as

H =
2�̂ 2

G
: (14)

For the Monte Carlo simulations, it was advantageous to compute the natural in-

variants (axis-angle pair) of the orientation of each element. The invariants are the axis

of rotation c and the angle of rotation ! about it. While Euler angles have been tra-

ditionally used for representing crystal orientations, the resulting space of orientations

has certain undesirable properties [24]. Instead, the natural invariants can be combined
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to construct a class of \Neo-Eulerian" parameterizations to describe an orientation [24],

r = f(!) c; (15)

by scaling the axis of rotation by a function of the angle. In particular, f(!) = tan(!=2)

results in Rodrigues' parameters [24, 25],

(rx; ry; rz) = (cx; cy; cz) tan
!

2
;

where (cx; cy; cz) are the components of a unit vector corresponding to the axis of rotation

c. The choice of f(!) = sin(!=2) leads to the vector part of a quaternion, with cos(!=2)

forming the fourth component,

(q0; q1; q2; q3) = (cos
!

2
; cx sin

!

2
; cy sin

!

2
; cz sin

!

2
):

The components in Rodrigues' space are easily obtained from the quaternions by dividing

the last three components by q0.

The space of Rodrigues' parameters is unbounded for arbitrary orientations, but

di�erent points in the space can be the maps to symmetrically equivalent orientations.

Considerations of symmetry under rotation permit the reduction of the space of interest

to a fundamental sub-region, which is typically obtained by choosing the equivalent

orientations nearest to the origin of the space. The task of computing the Rodrigues'

parameters for an orientation given in terms of Euler angles is readily accomplished using

quaternions [26]. However, this calculation does not always result in the quaternions in

the fundamental sub-region. Under cubic crystal symmetry, there are 24 equivalent

orientations [24, 27]. In order to determine the equivalent set of quaternions lying in the

fundamental sub-region, it is only necessary to compute cos(!=2) for all 24 quaternions,
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to check which one has the largest absolute value (for the smallest angle of rotation). The

other three components can then be calculated only for that quaternion [25]. Further

details on these calculations are given in Appendix A.

3 Application to Simulate Cold Deformation

The �nite element formulation discussed in the previous section has been used to simu-

late cold deformation corresponding to di�erent strains under plane strain compression.

The intent was to model the deformation conditions near the center of a sheet during

cold rolling. Reductions in thickness of 50% and 662
3
%, corresponding to compressive

true strains of " = 0:7 and " = 1:1, respectively, were simulated using appropriate dis-

cretizations. In order to capture the inhomogeneous deformation of the grains, each

grain was discretized with a fairly large number of eight-noded brick elements. Mate-

rial properties based on mechanical test data for 1100 aluminum [16] were used for the

simulation, and are listed in Table 1.

Table 1. Material parameters for the polycrystal simulations.

m _0 H0 �̂i �s0 _s m
0

0.05 1.0 s�1 58.41 MPa 27.17 MPa 61.80 MPa 5.0�1010 s�1 0.005

A Monte Carlo grain growth algorithm [28] was used for obtaining the initial mi-

crostructure for the �nite element calculations. A grid of 200 � 200 � 200 points, each

with a di�erent starting orientation number, was used in the three-dimensional grain

growth simulation. The simulation was run until a �nal average grain size of about 10

was obtained. The microstructures for use in the �nite element simulations were ob-

tained by taking suitable subsets of points from the large grid. For the case of " = 0:7, a

mesh of 15 � 30 � 60 elements was initialized with random orientations using a one-to-
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one correspondence between the elements and the grid points after grain growth. Grid

points with the same number were part of the same grain, and thus elements correspond-

ing to these points received the same initial orientation. In a similar fashion, the " = 1:1

case was simulated using a �nite element mesh of size 10 � 30 � 90. The initial mesh

in both cases was made up of elements which were cubes, so that the uniform spacing

between them in each direction could be preserved as in the Monte Carlo grid used for

grain growth. The overall domain was a parallelepiped with sides in the same propor-

tion as the number of elements in each direction, as illustrated in Fig. 1 for the case of

" = 0:7. Also shown in Fig. 1 is the microstructure indicating the discretization of each

grain with a large number of elements. The colors used to depict the microstructure

have no signi�cance other than to distinguish the di�erent grains.

Boundary conditions were applied to the mesh such that the material deformed

by compression along the Z-axis and extension along the X-axis, with Y being the

constrained direction. The normal velocities of nodes on the faces normal to �X and

�Z were prescribed to be zero. On the opposite faces, the normal velocity components

were prescribed such that a constant unit rate of deformation was maintained. When

the element distortion became too severe, the mesh was reconstructed using regular

elements with the proper aspect ratio based on the amount of strain. After deformation

to the appropriate �nal strain, the aspect ratio of the overall mesh became 1:1:1, due

to the choice of the initial mesh dimensions. The individual elements, which initially

were cubes, elongated in the X-direction and reduced in length along the Z-direction.

The aspect ratio of the elements on average in the X to Z-directions became the same

as the ratio of elements in the Z to X-directions. Figure 2 shows the deformed mesh and

microstructure after a compressive strain of " = 0:7. Examination of the deformed mesh

clearly shows the non-uniform deformation of the microstructure. Individual elements

undergo varying amounts of shear in addition to the extension along X and compression
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along Z.

After deformation to the appropriate strain, the hardness parameters for the el-

ements were used to compute the stored energy of deformation using the procedure

described in the Section 2.1. The stored energy distribution is hence a reection of the

hardening behavior of the microstructure. Shown in Fig. 3 are the initial and deformed

microstructures, and the stored energy distribution, for a section of the microstructure

taken normal to the constrained (Y) direction. It is seen that the stored energy has a

non-uniform distribution both within a single grain and among the di�erent grains. It is

observed that the stored energy is higher close to some of the prior grain boundaries, as

indicated in Fig. 3(c). However, it is important to note that not all grain boundaries de-

velop high stored energy values. There are also regions within some of the bigger grains

which show high stored energy, as in the grain at the bottom left corner. The stored

energy enhancement at the grain boundaries compared to the grain interior depends on

the local environment of the boundaries. If a grain is oriented favorably to accommo-

date the applied deformation, but is situated next to an unfavorably oriented grain, its

boundary will be constrained by the second grain, leading to greater deformation in the

interior.

The orientations of all elements which were part of the same grain were initialized

with the same set of Euler angles. During deformation, the orientations of these ele-

ments evolved in accordance with the local velocity gradient. The �nal orientations were

converted from Euler angles to axis-angle pairs, and Fig. 4 shows orientations before and

after deformation in terms of the angles of the axis-angle pairs. Note that the initial

angles have been depicted with the deformed mesh, to indicate the non-uniform reori-

entation of individual grains. The initial orientations of all elements in a grain are the

same, so they all map to the same color. After deformation to the appropriate strain,

elements which are part of the same grain show di�erent angles, indicating breakup of
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the grains. It must be mentioned here that the axis of rotation has not been included

in the plot, and hence the orientation information is incomplete. Nevertheless, it clearly

indicates the capability of the simulation method to capture the non-uniform orientation

distribution.

The distribution of orientations is shown in Fig. 5 for a section taken normal to the

constrained (Y) direction. The original microstructure shows the grains before deforma-

tion, and the deformed microstructure shows the angles from the axis-angle representa-

tions of the initial and �nal orientations. Since there is clearly a non-uniform pattern in

the reorientation of the grains, a plot of the average misorientation of each element with

its neighbors was constructed, as shown in Fig. 6. For computing the average misorien-

tation, �rst the misorientation of the element in question with each �rst nearest neighbor

was determined using the procedure described in Appendix A. The average of all the

angles (ignoring the axes) considering only the elements which were part of the same

grain according to the original microstructure was then computed to obtain the average

misorientation. Thus, the result of this calculation using the starting orientations would

lead to zero misorientation for all the elements. The intent was to avoid neighboring

elements if they were part of a di�erent grain, so that the misorientation would be a

measure of deviations in reorientation in the same grain. As seen from Fig. 6, there are

some bands of elements with a high average misorientation with �rst nearest neighbors.

While most of the bands correlate well with prior grain boundaries, some of these bands

pass right through the middle of a grain, indicating di�erent deformation paths for ele-

ments on either side. An instance of such a band is indicated by the elements numbered

458 and 1358 on either side of the band. It is seen from Fig. 6 that the shearing of these

adjacent elements is in opposite directions, and leads to high misorientation values. Fig-

ure 7 shows the deformed microstructure and the average misorientation for a section

taken in the X-Z plane for the case of " = 1:1. Once again, there are high misorientation
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regions near grain boundaries as well as in the interior of some large grains.

The distribution of average misorientations computed for all the elements is shown

in Fig. 8 in the form of histograms. For the case of 50% reduction, the majority of

misorientations are rather small, and the drop is fairly steep, with maximum values

around 25�. At the higher deformation level, the spread is wider with less number of

elements having low misorientations, and the maximum misorientation angle is about

35�. These results correlate quite well with the experimental data reported by Juul

Jensen [29]. Even though the measurements are carried out at a much smaller length

scale than the simulations, the qualitative and quantitative match between the two is

quite remarkable.

3.1 Texture evolution

The Euler angles used to initialize the orientations of the elements for the polycrystal

simulations were obtained by a random sampling of Euler space. Figure 9 shows the

pole �gures from the initial orientations used for the deformation to " = 0:7 in the form

of a point plot. The same set of orientations is also shown in Fig. 10, but now the

orientations are weighted by the number of elements used to discretize a grain at that

orientation in the �nite element mesh, leading to a non-random texture. The orientations

were processed using the DIOR program from popLA [30] with cubic crystal symmetry,

followed by a Gaussian smoothing operation, to generate the pole �gures shown in equal

area projection. The initial texture for the orientations used in the " = 1:1 case are shown

in Fig. 11. Note that the choice of the mesh sizes leads to di�erent microstructures for

the two cases, and hence di�erent initial textures.

After deformation to compressive strains of " = 0:7 and 1.1, respectively, each ele-

ment had a di�erent orientation. Since there were 27,000 elements in the mesh for each
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case, the resulting orientations were again processed using the DIOR program, with the

application of cubic crystal symmetry and orthotropic sample symmetry. The textures

after the two strains are shown in Figs. 12 and 13, respectively. Deformation by plane

strain compression leads to development of texture components typically observed after

cold rolling [31, 32], such as f112g<111> copper, f123g<634> S and f011g<211> brass

orientations (shown in Fig. 14). However, the initial texture plays a signi�cant role

in the relative intensities of these components. The texture for deformation to " = 0:7

shows a strong f123g<634> S component and a weaker f112g<111> copper component,

whereas the opposite is true for the texture after deformation to " = 1:1. The di�erent

�nal textures are a result of the di�erent initial microstructures, indicating the inuence

of the starting orientations.

The development of deformation bands in the grains due to the inhomogeneous strain-

ing has been discussed earlier. Figure 15 shows the evolution of the orientations of two

adjacent elements which started with identical orientations, but evolved in di�erent di-

rections. These two elements are marked by their numbers in Fig. 6, and are seen to

undergo shear deformation in opposite directions. The orientations of these two elements

are indicated in the pole �gures in Fig. 15 at strain increments of every 10% in the form

of �lled (element 458) and open circles (element 1358), showing the reorientation in

di�erent directions. These orientation gradients play a signi�cant role in the nucleation

of strain-free grains during subsequent annealing [12].

4 Conclusions

The deformation of polycrystals has been simulated by making use of the �nite element

method. By means of discretization at the level of individual grains, it was possible to

monitor the non-uniform deformations of the grains. A constitutive model based on crys-
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tal plasticity was used to track the orientation and hardness values of the elements. The

anisotropic material response due to the limited deformation modes available through

crystallographic slip was included in the formulation through this approach.

Two di�erent meshes were constructed to simulate deformation in plane strain com-

pression of a material with FCC crystal structure to di�erent �nal strains. The results

demonstrate the capability of the formulation to capture the inhomogeneous deformation

of grains during the plastic deformation of polycrystals. The stored energy of deforma-

tion related to increased dislocation density was computed from the hardness of the

elements, and the orientation data were transformed to an axis-angle representation. It

was observed that the enhancement of the stored energy at the boundaries relative to

the interior of a grain depends on the local orientations of the neighboring grains, which

dictate how much deformation is accommodated by the boundary regions. While some

boundaries show higher stored energy values, others show lower values than interior re-

gions. It is known that such regions are the possible sites for nucleation of recrystallized

grains. In a similar fashion, the orientations of the elements showed non-uniform distri-

butions, with elements which received the same initial orientations as part of the same

grain evolving to di�erent �nal orientations. There was clearly an e�ect of the neigh-

boring grains on the deformation of each grain, with the resulting constraints leading to

di�erent degrees of inhomogeneity.

It must be noted here that development of the �nite element formulation for massively

parallel computers is a key feature which enabled the use of large three-dimensional

discretizations. In studying the deformation of polycrystals, it is necessary to choose

a representative sample consisting of a reasonable number of grains. Capturing the

gradients within individual grains requires placing a large number of elements in each

grain. This leads to a re�ned discretization with thousands of elements. If one now adds

the complexity of the constitutive response due to the nature of the crystal plasticity
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model, and the degradation in the condition of the system due to the incompressibility

constraint, the computational expense is so large that it is only feasible on a parallel

architecture.

The strength of the simulation technique lies in its ability to provide quantitative

information on the distributions of stored energy and orientations among the elements.

The data from these simulations have been used for modeling the process of static recrys-

tallization using the Monte Carlo method [12]. By providing quantitative information

on the orientation and stored energy distributions in the cold worked microstructure, the

current simulations have enabled the modeling of nucleation phenomena during recrys-

tallization, in turn leading to the prediciton of recrystallization textures. Such detailed

simulations at the microstructural length scales provide information on the deformation

of polycrystals which can then be used for developing better models for use in simulations

of bulk deformation at the continuum scales.
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Appendix

A Computation of Natural Invariants

Given the Euler angles ( ; �; ') to describe the orientation of a crystal [22], it is of

interest to compute the natural invariants, i.e., an axis-angle pair, to represent the ori-

entation. For this purpose, it is convenient to �rst convert the angles to a rotation matrix.

While this is not a necessary step for a single orientation, it is useful for computing the

misorientation between two crystals. The rotation matrix is given by

[R] =

2
6666664

� sin sin'� cos cos � cos' sin cos'� cos cos � sin' cos sin �

cos sin'� sin cos � cos' � cos cos'� sin cos � sin' sin sin �

sin � cos' sin � sin' cos �

3
7777775

The angle of rotation !, and the components of a unit vector corresponding to the axis

of rotation c, are then obtained as [25, 27]

! = arccos[
1

2
(Tr(R)� 1)]

cx =
R32 � R23

2 sin!

cy =
R13 � R31

2 sin!

cz =
R21 � R12

2 sin!

In computing the angle and axis using the above expressions, care must be taken for

angles close to the limits of 0� or 180� to avoid numerical di�culties.

For the case of crystals with symmetries under rotation, it is possible for di�erent

orientations to be symmetrically equivalent, e.g., a rotation of 90� about the <100> axes

for a cubic crystal. Under such conditions, the three-dimensional space of orientations
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can be reduced to a fundamental sub-region, within which all possible orientations can

be found. While there are clearly an in�nite number of choices for such a sub-region, it is

common to consider a sub-region obtained by choosing the equivalent orientation which

gives the smallest angle of rotation. In this sub-region, each point represents a unique

orientation. For any point outside the sub-region, an equivalent orientation which lies

inside the sub-region can be found by a symmetry operation.

For cubic crystals, there are 24 symmetrically equivalent orientations [24, 27]. The

task of �nding the orientation with the smallest angle is accomplished by making use of

quaternions. The quaternions for the axis-angle pair (c; !) are given by [27]

(q0; q1; q2; q3) = (cos
!

2
; cx sin

!

2
; cy sin

!

2
; cz sin

!

2
)

It is clear that the smallest angle corresponds to the largest q0. Hence, �nding the

quaternion which lies in the fundamental region requires computing the value of q0 for all

24 quaternions, and choosing the one which has the largest absolute value. Calculation

of the value of q0 for the symmetrically equivalent quaternions under cubic symmetry is

performed using

q
0

0 = q0s0 � q1s1 � q2s2 � q3s3

where the values of (s0; s1; s2; s3) are listed in Table 2 for cubic symmetry [27].

Once the quaternion with the maximum q
0

0 is determined, then the other compo-

nents for that equivalent set of quaternions are computed using the rules of quaternion

algebra [25, 26] as

q
0

0 = q0s0 � q1s1 � q2s2 � q3s3

q
0

1 = q0s1 + q1s0 + q2s3 � q3s2
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Table 2. Quaternions which are equivalent under cubic symmetry.

s0 s1 s2 s3

1 1 0 0 0

2 0 1 0 0

3 0 0 1 0

4 0 0 0 1

5 1=
p
2 1=

p
2 0 0

6 1=
p
2 0 1=

p
2 0

7 1=
p
2 0 0 1=

p
2

8 1=
p
2 �1=

p
2 0 0

9 1=
p
2 0 �1=

p
2 0

10 1=
p
2 0 0 �1=

p
2

11 0 1=
p
2 1=

p
2 0

12 0 1=
p
2 0 1=

p
2

13 0 0 1=
p
2 1=

p
2

14 0 1=
p
2 �1=

p
2 0

15 0 1=
p
2 0 �1=

p
2

16 0 0 1=
p
2 �1=

p
2

17 1=2 1/2 1/2 1/2

18 1/2 1/2 1/2 �1/2
19 1/2 1/2 �1/2 1/2

20 1/2 �1/2 1/2 1/2

21 1/2 1/2 �1/2 �1/2
22 1/2 �1/2 1/2 �1/2
23 1/2 �1/2 �1/2 1/2

24 1/2 �1/2 �1/2 �1/2
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q
0

2 = q0s2 � q1s3 + q2s0 + q3s1

q
0

3 = q0s3 + q1s2 � q2s1 + q3s0

Having determined the quaternions corresponding to the smallest angle, the axis and

angle can then be computed using

! = 2 arccos(q00)

cx = q
0

1= sin
!

2

cy = q
0

2= sin
!

2

cz = q
0

3= sin
!

2

Computing the misorientation between two crystals with di�erent orientations can

follow the procedure outlined above, once the matrix corresponding to the rotation from

orientation 1 to 2 is determined,

[R] = [R2][R1]
T

where the subscripts refer to the two orientations. The axis and angle pair describing

the misorientation between the two crystals is then determined.
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Fig. 1. Initial mesh of 15 � 30 � 60 elements (left) and the microstructure (right) for

the case of deformation to " = 0:7.
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Z

Fig. 2. Mesh (left) and microstructure (right) after deformation to compressive strain

of " = 0:7.
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Fig. 3. (a) Initial microstructure, (b) deformed microstructure, and (c) stored energy

distribution for a section taken normal to the constrained (Y) direction for deformation

to " = 0:7.
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Z

Fig. 4. Map of the angles from the axis-angle representation for the initial (left) and

�nal (right) orientations for the case of deformation to " = 0:7.
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Fig. 5. (a) Initial microstructure, (b) angles from initial orientations mapped to the

deformed microstructure, and (c) angles from �nal orientations for a section taken normal

to the constrained (Y) direction after strain of " = 0:7.
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Element 1358Element 458

Fig. 6. Deformed microstructure showing the mesh (left) and the average misorienta-

tion of the elements with nearest neighbors (right) for a section taken normal to the

constrained (Y) direction after strain of " = 0:7.

0 5 10 15 20 25 30 35 40 45

Fig. 7. Deformed microstructure (left) and the average misorientation of the elements

with nearest neighbors (right) for a section taken normal to the constrained (Y) direction

after strain of " = 1:1.
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Fig. 8. Histograms showing the distributions of average misorientations for deformation

to " = 0:7 and 1.1.
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Fig. 9. Pole �gures showing the initial orientations used for the case of deformation to

" = 0:7.
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Fig. 10. Pole �gures in equal area projection representing the initial texture used for the

case of deformation to " = 0:7. Contour levels represent multiples of random texture

intensity on a logarithmic scale.
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Fig. 11. Pole �gures in equal area projection representing the initial texture used for the

case of deformation to " = 1:1. Contour levels represent multiples of random texture

intensity on a logarithmic scale.
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Fig. 12. Pole �gures in equal area projection showing the texture after deformation to

" = 0:7. Contour levels represent multiples of random texture intensity on a logarithmic

scale.
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Fig. 13. Pole �gures in equal area projection showing the texture after deformation to

" = 1:1. Contour levels represent multiples of random texture intensity on a logarithmic

scale.
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Fig. 14. <111> pole �gure in equal area projection showing some ideal orientations

commonly found in rolling textures.
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Fig. 15. Evolution of orientations of two adjacent elements in the same grain shown as

pole �gures in equal area projection. The elements are marked in Fig. 6 as 458 (shown

here with �) and 1358 (shown here with �).

34


