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MATHEMATICS OF THE THERMAL DIFFUSION OF HYDROGEN IN ZIRCALOY-2

By
Anton Sawatzky and Erich Vogt

: By means of mathematical solutions to the appropriate
diffusion equations we describe the kinetics of the thermal diffu-
sion of hydrogen in Zircaloy-2 for the various temperatures and
concentrations encountered in a heavy water moderated reactor.
When the hydrogen concentration is below terminal solid solubility
hydrogen 1s present only in the a-phase. Redigtributions are then
degcribed in terms of the characteristic functions of the diffus-
ion equation. For higher concentrations both the a~ and dé-phases
are present. We assume the two phases to be always in equilibrium.
For moderately small hydrogen concentrations exact solutions of
the two-phase equation approach the approximate solutions derived
by Sawatzky and for all concentrations the exact solutions exhibit
the qualitative features of his result: the two-phase concentra-
fion increases with time, everywhere; in the absence of a hydrogen
current at the hot end of the sample an a-phase region always ex~’
ists there; the interface of the a+d, o~phase boundary moves to-
ward the cold end of the sample and the hydrogen concentration is
discontinuous at the interface. Simultaneous solutions of the o-
and a+0 hydrogen distributions and of the concomitant interface
motion are obtained and compared to the observations of Sawatzky
and Markowitz. The kinetics of the hydrogen diffusion process are
shown to lead to an apparent heat of transport of the a~phase
which is lower than the actual value (even for samples with long
anneals) thus resolving at least partially the disparity between
experimental measurements of this quantity.

Chalk River, Ontario
October, 1961
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INTRODUCTION

A number of recent papersl_4 have teported measure-
ments on the diffusion and redistribution of hydrogen in Zircaloy
-2 under temperature and concentration gradients. These studies
were instigated by problems arising from increasing use of Zirca-
loy-2 as a fuel element cladding material in pressurized-water
power reactors. The Zircalby;z picks up hydrogen during the op-
eration of the reactor: <the consequent precipitation of zirconium
hydride in the Zircaloy-2 has pronounced effects on its mechanical
properties.

The purpose of the present paper 1s to describe the
kinetics of the thermal diffusion of hydrogen in Zircaloy-2 for
the various hydrogen concentrations and temperatures likely to be
encountered in reactors. ‘

When the hydrogen in the Zircaloy-2 is entirely in
the solid solution‘phase (a~phase) - that is the hydrogen concen-
tration everywhere is below terminal solid solubility - then the
differential eguation for thermai diffusion i1s a well known one
and the redistribution can be described by standard mathematical
methods some of which are given in sectlon III below. For larger
hydrogen concentrations (abové terminél golid Solubility) the hy-
drid phase (é-phase) is present as well.

When both the a and & phases are present we follow
previous authors in assuming that the two phases are always in
equilibrium with each other. However, the hydrogen diffusion in

both phases is fully taken into account. Shewmon5 first pointed
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out that for small hydride concentrations the a+dé thermal diffu-
sion takes place predominantly in the a-phase. Using this idea
Sawatzky3 solved the two~phase diffusion equation, in the linear
geometry appropriate to his measurements, neglecting both the
diffusion in the hydride phase and the reduction in the volume of
the a-phase due to the presence of hydride. Modifications of
Sawatzky's diffusion equation to take into account these effects

6

were first suggested to us by Kidson~ . The modified equation in
linear geometry, has been published recently by Markowitz4, al-
though he does not attempt to solve it.

For the moderately small hydrogen concentrations
which he used, Sawatzky found good agreement between his measure-
ments and his approximate solution of the a+dé diffusion kinetics.
On the basis of his own measurements with cylindrical geometry
Markowitz4 has strongly attacked Sawatzky's approximate a+d solu-
tions. Apparently he has neither understood the principal feat-
ures of Sawatzky's solutions nor appreciated the importance of
the difference between the solutions appropriate to cylindrical
and to plane geometry.

Taking into the account the change in geometry,
Sawatzky's approximate two-phase results are shown below to
agree well with Markowitz's observed redisgributions even though

the initilal hydrogen concentrations are far above terminal solid

Solubility.
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In the next sectlon we derive the modified two-
phase equation for arbitrary geometry. The exact solution of
this equation 1g given in section IV for linear and cylindrical
geometry. It is shown that Sawatzky's approximate solution 1is
quite accurate for almost all the temperatures and hydrogen con-
centrations which are actually encountered.

In Sawatzky's approximate theory the hydrogen con-
centration everywhere in the two-phase region increases continu-
ously. As his paper pointed out,this result, together with hydro-
gen conservation, implies that in a sample with no hydrogen current
flowing into the hot end a two-phase region is always accompanied
by a single=phase region at the hot end of the sample. The net
hydrogen gain in the two-phase region 1s supplled by the decrease
of hydrogen in the single -phase region and by the movement of the
(a, a+8) boundary toward the cold end of the sample. Hydrogen
conservation at the (a, a+6) boundary leads to a discontinuity in
the concentration and its derivative there. In Sectlon VI it 1is
shown how these qualitative features of the thermal diffusion
kinetics arise from the simultaneous scolution of the a-phase dif-
ferential equation and a+6 phase equation. Methods are derived
for the solution of the redistribution in both phases and the
accompanying motion of the boundary: approximate solutions valid
for small and large times are given. The solutions account well
for the observed redistributions of Sawatzky and Markowitz. It
is shown how the continuing motion of the (a, a+d) boundary leads
to measured values of the heat of transport lower than the actual

value, even for specimens with relatively long anneals.
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THE BASIC DIFFUSION EQUATIONS

At each temperature in Zircaloy-2, the maximum
amount of hydrogen which can be in the solid solution phase (a-
phase) is called the terminal solid solubility, Na’ given by

N - Néo)enAH/RT (1)

where Néo) 1s a constant, T the temperature in oK, R the gas con-
stant and AH the heat of mixing. Values of Néo) and AH have been
measured by Sawatzkyg. Hydrogen in excess of Na precipates out
as hydride (d~phase).

When only the solid-solution phase is pfesent the
hydrogen current J, is simply

*
Q. N

RT?

7} (2)

J =-D, N +

where Da 1s the diffusivity, Qa* the heat of transport,N the hydro-
gen concentration and'ﬁ'the gradient operator. The expression (2)
for the a-phase current is strictly valid only for the case of
isotropic diffusion. Hence 1t does not hold for single Zr cry-
stals but is valid for polycrystals. The diffusivity is tempera-

ture dependent:

5 _ p(o) .~Qa/RT (3)
a o
where Da(o) is the frequency factor and Qa the activation energy
of the alpha phase. Measurements of Da(o) and Qa have been given
'’

by a number of workers'. The measurements of QG*S are not in good

agreement with each other. However, as shown below, the disagree-
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ment between the various measurements may be at least partially
resolved by properly taking into account the kinetics of the
thermal diffusion of hydrogen.

In (2), the first term on the right gives the hy-
drogen current arising from the concentration gradient; the second
term arises from the temperature gradient. The change of hydrogen
concentration with time is obtained from (2) by means of the con~

tinuity equation.

aN - 2 = (= DOL Q’Ct* =4 = DOL Qoa* =
= = F T =D VN +W.(VD, + -2 7T) + W . VT ) (4)
at o — RT

Given a sample with an initial (t=0) distribution of hydrogen and
with a given hydrogen current at each boundary of the sample, (4)
may be used to solve for the hydrogen distribution at all times t
subsequent to t=0, In-Section ITI a method of solving (4) is dis-
cussed and applied to observed redistributlons.

In the two-phase region, where N exceeds Na’ we
assume that at every point the a and 6 phases are in equilibrium
with each other so that the concentration of the solid solution
is Na' Sawatzky's treatment of the two-phase region followed

7

Shewmon' in assuming that the diffusion of hydrogen occured pri-
marily in the a-phase rather than in the hydride: both the diffu-
sion through the hydride and the reduction of the a-phase volume
caused by the presence of the hydride are neglected. Then the solu-

tion for the hydrogen concentration in the two-phase region is simple.

We use (2) above, for the current replacing the actual hydrogen
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concentration by the solid solution concentration Na’ obtaining

3, = -p, N, + (W /RT?) V1) (5)

a

Using'j& in the continuity equation (4) we obtain

*
Q., N
aN = = = e
3 = Vv -?OL—V 'DG,(VNOL+ RT2 VT) (6)

The a+d results of Sawatzky correspond to solutions
of the approximate two-phase equation (6) specialized to the
linear geometry of his measurements. The important features of
his results are independent of geometry. Thus, since the right
side of (6) is independent of N the total hydrogen concentration
of (6) increases linearly with the time everywhere in the two-
phase region. This fact together with hydrogen conservation is
sufficient to yield the other important features of the redistri-
bution discussed in the introduction and below, that is, the de-
velopment of an a-phase region at the hot end of the sample, the
movement of the a+d, o interface toward the cold end of the
sample and the development of a hydrogen concentration discon-
tinuity at the a+é,a interface.

The modifications of (6) to take into account the
effects of the hydride were pointed out to us by Kidson6 and have
been published independently by MarkowitzA(for the specilal case
of linear geometry). They are based on the following expression

for the current'?,
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T :-?&Aa +'?5Aé (7)

where'j& is the a-phase flux, (5), a.bove,?(5 is the 6-phase flux
while Aa and Aé are the fractional areas occupled by each compon-
ent at a cross section normal to the flux. The areas are taken
as equal to the relative amounts of a- and 6- phases present at

each temperature, that is

A
o

(Né"N)/(Né—Na) E) (8)

A

|

5 = (N—'Na)/(Né_Na) K (9)

where N(5 is the (a+6,8) phase boundary hydrogen concentration.

The areas (8) and (9) are based on the assumption that the densi-
ties of the o and 6 phases are equal. The hydrogen current in
the hydride phase, Js, is similar to (2)

Qe N

=2 V1) , (10)

—

RT

where Qé* 1s the 6-phase heat of transport, D(5 is the 6-phase
diffusivity, -

D. =D (o) e—Qé/RT, (11)
8 o)
Dé(o) is ﬁhe frequency factor and Q5 the activation energy of the

5—phase. Below 4500C, N, is roughly temperature independent(B)

ol
so that we can neglect the gradient'GNé in (10).
Using the current (7) in the continuity equation

(4) yields the following general differential equation for the

two~phase hydrogen concentration, applicable to any geometry:
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2le
Il
s
-
l'_'—lﬁ
o
<]
=

D Q *¥N D.Q . .*N
V. g {—DOLVNOL - oo agp, 20 0 VT}
o) RT RT
(12)
N N.D Q % N.N D.Q.¥
1 =d a o a S a 8V6

& o L RT

The right side of (12) has three terms, one proportional to the
gradient;vm} of the total hydrogen concentration, another pro-
portional to N and the other independent of N. Although (12) is
not as simple as the approximate two-phase equation (6), employed
by Sawatzky, we give exact solutions of (12) in Section IV below
and compare them to the solutions of (6). The exact solutions
of (12) are not too difficult because (12) contains only first
order time and posgition derivatives of N, ~ unlike the single-
phase equation (4) which contains second-order position derivatives.
In the following sections we give solutlions not only
for the a-phase equation separately and the o+6 equation separately
but also for the more general case in which a sample contains
regions of both types separated by a moving interface. As will be
shown an a+é reglon is almost always accompanied by an a-phase
region so that in most problems of practical interest one must
actually take both regions into account. The results obtained

3

are compared to the redistributions observed by Sawatzky~ and

i

Markowitz .
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REDISTRIBUTION IN THE ALPHA-PHASE

We shall specialize the single-phase differential
equation (4), to the linear geometry used by Sawatzky3andtm the
cylindrical geometry of Markowitz4, To facilitate the computa-

tions given below we change variables
y = 1/T (13)

In the linear geometry the temperature varies only in the one
direction,'?} and all quantities including the concentration are
assumed to be constant in directlons perpendicular to T. The
heat conductivity of Zircaloy-2 is assumed to be temperature in-
dependent so that the temperature gradient along'?'is assumed to

have a constant value K,
- = K, (1)"‘)

Noting that, for the linear geometry,'VN = —Ky2 dN/dy along'?
and that V.7 = —Ky2 dJ/dy for a'?'along'?, the differential equa-

tion (4) reduces to
*: *
ey Alafy 2 JerSvar %2 By ] (g
N Y dy2 v R dy R v R

For the cylindrical geometry of Markowitz the tem-~
perature varies in cylindrical coordinates, only with the radius
parameter, r. If the temperature dependence of the conductivity

is again neglected we have
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I - xyr (16)

where K' is a constant. The gradient and divergence are differ-

2
ent in this geometry: VN = dN/dr = —-K%Z—‘%g along the radius
vector and'VT3'=-% d(rJ)/dr = - E% y2 g% (rJ) for a current along
r

the radius vector. The regulting differential equation for cylin-
drical geometry is identical to (15) if, on the right side of (15),
we replace K° by (K'/r)g. In this section we shall develop the
solutions of (15) and mention only briefly the modifications which
occur when cylindrical geometry 1s used.

| To solve (15) we need to specify an initilal distri-
bution of hydrogen (at t=0) and boundary conditions at the cold
end, Voo and hot end, vy of the sample. The boundary condition
at the ends of the sample are given by the hydrogen current there.
We develop, first, the solution for zero current at both ends of
the sample and then give the modifications in the solution when a
constant current flows through the sample. For linear geometry
the hydrogen current, (2), reduces to

2 | dN Qa*
J =KD, ¥y {ay - N] (17)

and the boundary conditions are

J(yl) = J(yg) =0 ' (18)

The method of solution which we employ 1s very

closely analogous to the Fourler series solution of heat flow
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problems. We look for solutions of the following form:

N(yﬁt) = 2‘7\8’7\ e A N')\(y) <19)

where the a, are a set of expansion coefficients, and where each

eigenfunction, N satigfies the equation

?\J

2 N |
k2t ELHA + (2 . CT 2 Wi - (2 m,gg SE“ N. b= BN (20)
Y X 2 v R 3y vy TR )R AT TR

ay

with an eigenvalue E% and the following boundary conditlons at
V12 Yo
dN

>

*
= 89_ N ' )
- R 21
A y=yl K] 'y2 (

g

The eigenvalues, E., of (20) are assumed to be real,

A
non~degenerate, and non-negative and the eigenfunctions, N%, are

agssumed to form a complete orthonormal set of functions, that is
Io
— 1
fy N, (y) N, '(y) £ (¥) dy = &, (22)

where f(y) is an appropriate weight function.

By substitution of the suggested solution, (19)
into the differential equation (15) it is easily verified that
(19) is indeed a solution of (15). Also since each N, satisfies
the boundary conditions (18) the whole sum does also. Further
more, if N(O)(y) is the initial distribution of hydrogen and if

the N, are a complete orthonormal set of functions, as implied

A
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by (22), then the expansion coefficients a% can be found by
multiplying both sides of (19), for t=0, by NK,(y) f(y) and inte-

grating over all values of y between V1 and Vo The result is

2 = [ 20O ) 0, (5) £(3) ay (23)
71
Therefore all we need to do to complete the solution is to find
the weight function f(y) which makes the eigenfunctions Nx(y)
orthogonal to each other.
To construct the weight funotioﬂi £(y) we begin by

writing each N% as a product

N, = H(y) &, (v) (24)

where H(y) is independent of A and chosgen so that the differential

equation for G derived from (20) contains no first-order deriva-

)\J

tives of G, with respect to y. The removal of the first order

A
derivatives will make it simpler for us to establish the desired

orthogonality properties of the eigenfunctions. The H(y) which

has this property is

[N

Q Q*
(%) v

although any constant multiple of (25) would serve as well. Then

H(y) == e (25)

e

equation (20) changes to (after dividing both sides of (20) by

24
K=y Da H)

* The reader who is willing to accept the result ((32), below) for
the weight function, without going through the intervening mathe-
may proceed to the middle of page 14.
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d~G Q. -Q_*
A ( o o > [ 1 ;} -2 =4 -1
+ -7l G =<Ky D E.G (26)
dy2 R ’ <%r@f> A o ATA
R v
We write down the same equation for G%', that is
2 2
aca Q ~Q *
Al < o > [ 1 ;] 2 b -1
+ - %1 6.,, =<Ky D E, ,G (27)
dy2 R <Qa~Qa*> A o ATTA!
-maly 4

We multiply (26) by Gy 1 (27) by G,, subtract and integrate to

obtain

N 2
2 a~a a~a v
A A! 2 =l =1
J[ G, —D - @ dy = (E,=E,,) JP K™D 6,6, ,dy (28)
vy < A dyz A d&? A TA! - a  TATA!

' 1

The boundary condition (21) for G, 1is

Uy Q®

——) G (29)

l o
(]
>
{
TN
|

-1
2

If we integrate both terms on the left side of (28) partially

we obtain

2 2
¥ S 4G aG a6
ela,, —2 - @ AVdy = 6,, —2 - G, —2 (30)
. S S N A Tay T % Ay
1 vy =7

which vanishes according to the boundary condition (29). Hence

(28) becomes




AN TN o] AN
I
2
- <Ex~Ew>fy £(y) N () N, (¥) ay
1

Q*

)
<
g

I
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._.gi_.y -1
_ g2 Y-u Da“l 72 _ <K2y2 Da(O)e R >

(32)

Since the eigenvalues are agssumed to be non-degener-

ate (that is E, # E,, for A #£ A') (31) shows that the orthogonal-

ity conditions (22) holds if the weight function is defined as in

(32). This completes the proof that (19) is a satisfactory

solution of the alpha-phase differential equation.

The lowest eligenvalue, EO, is identically zero and

the corresponding eigenfunction NO corresponds to zero current

everywhere. From (17) we find

*
N =c¢ e Qa y/R
o) o)

where Cq 1s a normalizing coefficient,

-

=

. - [/wyg egQa* y/R c(y) dy]

| 1 Q*y. /R Q *y,/R
_ (KQD (O))z e o l/ B y2/ QCY,* . QOI,*
a V1 T, R MR

) - 5

Q%

R

(33)

(3%)

)t
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The exponential integral, Ei(x), in (34) is defined by

B, (x) =fX e Yat /¢ (35)

+= 00

and numerous tables of it exist.

The expansion coefficient, for the mode A = O 1s
easily found if the initial hydrogen concentration, N(O), is
constant. We then find, from (23)

2 = (10)c /i 10y (g - 2 (36)

For A > O the eigenvalues Ek are all positive. The
solution (19) has, therefore, a very plausible behaviourf as the
time increases from t = 0 all of the modes other than A = O decay
exponentially. The zero current mode (A = 0) is the final equili-
brium distribution of hydrogen attained by (19) at large values of
t. It is Sasily verified that this final distribution,

a, C, e Qu y/R’ contains the same amount of hydrogen as present
initially.

Unfortunately the highef modes (A S 0) cannot be
evaluated, as was that for A = 0, 1n terms of simple transcenden-
tal functions. Some of the higher eigenvalues, EA’ and eigen-
functions, N%’ were computed directly from (20) by Dr. J.M. Kennedy
with the Chalk River Datatron Computer, for a temperature range and
gradient typical of Sawatzky's experiments. The constants used in

. . * -
this calculation were Q /R = 3050°K, Dao = 2.17 x 10 3 omg/sec,
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Qa/R = 4180°K, temperature gradient 80 deg/cm, hot end temperature
500°C and cold end temperature 300°C. - It was found that the lower
eligenvalues are all very nearly given by E, = %2/46 nours™ . Thus
even at 1 hour all modes higher than the sixth or seventh have
substantially decayed. In addition the initial constant distri-~
bution itself is quite well fitted when only the terms with
AN=0, 1, 2, 3 are retained, the error being only 7% at the ends
of the sample and 3% elsewhere. This error itself, being due to
neglect of higher terms, is rapidly damped out with time. The
shape of the resulting distributions, at several times, 1s shown
in Figure 1.

The difference between the slope and wvalue of the
curves on Figure 1 for finite t from that for t = «» leads to an
error in the heat of transport estimated from these curves. Un-
less t 1s more than 4 days this error may be as large as 10%.

Although the exact eigenfunction (other than A = 0)
cannot be expressed analytically there is an acceptable approxi-
mation method which makes these functions more tractable. We

make the following three approximations:

1) In (27) we ignore the second term on the left because it
happens to be small (for A # O and with the constants ap-
propriate to Zircaloy-2) compared to the right side of (27).

This approximation i1s also valid for cylindrical geometry.

4o -1

2) On the right side of (27) and in (32) we regard y~ .

as independent of y. For the temperature range of Figure 1
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this quantity in fact varies only by about 30% for Zirca-
loy=2. However for cylindrical geometry the corresponding
approximation would be untenable, except for very small

temperature ranges.

3) In the boundary conditions, (29), the bracket on the right
side of (29) is very small compared to the reciprocal of
the period of osgcillation of the eigenfunctions so that
we can approximate (29) by setting dGA/dy = 0. This ap-
proximation depends again on the particular constants of

Zircaloy-2 but will also hold for cylindrical geometry.

The first two approximations makes the eigenfunc-
tions trigonometric onegs. The third states that they have zero

derivative at both y, and y,. Therefore they are
1 2

N, = ¢ H(y) cos <AW y—yl> (37)

where c is a constant independent of A and y. The value of ¢ can

be determined from the orthogonallty condition (22) to be

¢ = <K2 ¥ D ——?--——) : (38)

o Yo=¥y

In (37) A takes on all integral values from O upwards. To show
how good these approximate eigenfunctions are, the calculations
shown on Fig. 1 have been repeated, on Fig. 2, using the approxi-
mate eigenfunctions. The approximate redistributions differ

only s8lightly from the exact ones. It should be noted that the
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most critical approximation made above is the second one: this
approximation becomes better as the temperature range, y2~y1, is
decreased. The eigenvalues, E%’ corresponding to the approximate

eigenfunctions are proportional to AE.

2 2 :
B, =A% 8= 2T x%pyt (39)
(yg"'yl)

where the constant of proportionality, E, is 1/46 hour's"1 for the
case discussed on Fig. 2. The first ten approximate eigenvalues

for this case differ from the corresponding exact values by less

than 1%.

No calculations have been carried out for cylindri-
cal geometry although the exact solution developed above holds for
that geometry if we replace Kg, in the weight function (32), by
(K'/r)Z.

The solutions discussed thus far correspond to zero
current at the boundaries of the sample. A constant current, JO,
flowing into one boundary and out of the other is easily accommo-
dated in the solution. We describe first the equilibrium solution,
N', with constant current JO, everywhere. According to (17) we
then have

ant Q¢ N

_ 2y-1 QI/R (40)
dy R ~ Yo a

We solve (40) by writing, first

Q _* R
w(y) = e T TR (41)




- 19 - CRT-1049

so that M(y) satisfies the equation

-Q * R
am (0) 21 (Q=9y%) v/
T = Jo (KD v°) e (42)
which can be integrated directly, in the same way as (34) above,

to yleld

(O))”l[_'l eQay/R+ Qa;Qa* . Qa*y/R E_<Qa;Qa* y>]
v 1

+ A e B /R (43)
where A is an integrating constant determined, for example bylthe
value of N!'(y) at any one given point.

The redistribution of hydrogen in a sample with con-
stant current at both boundaries will, for large time t, approach
the equilibrium solution (43). If the initial hydrogen distribution
is N(O) then we choose the constant A, in (43) so that the final
hydrogen distribution contains the same amount of hydrogen as the

initial distribution, that is

fy2 N0 ay /v =fy2 N' dy/y© (44)
Y

1 bA]

To find the hydrogen distribution at any finite time we write
N = N' + (N-N') and analyze the difference (N-N') in a series of
elgenfunctions corresponding to zero current at the boundary

as it was done above. It follows at once from the choice
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of the constant A that the coefficient, 8y of the lowest eigen-
function vanishes 1dentically. The higher modes decay exponen-
tlally to yield the asymptotic solution N - N!'. Since N' carries
a current JO everywhere and since N=N'! has zero current at the
ends of the sample the superposition of N' and (N-N') has the
desired behaviour at the boundary.

An illustration of the constant current solution,
N', is given on Fig. 3 for a case which i1s used below to discuss
the diffusion kinetics when both a-phase and a+6 regions exist.
In the alpha phase part of the figure (above 24500) the solid
line 1s the constant current solution with J, =112 x 10’1L ppm
cm/sec. The constant A of (43) is chosen so that the nhydrogen
concentration at 24500 is equal to terminal solid solubillity. For
comparison the figure also shows a zero current distribution nor-

malized to the same hydrogen concentration at 24500.
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REDISTRIBUTION IN THE TWO-PHASE REGION

In the linear geometry of Sawatzky the two-phase

equation (12) reduces to

F = -5 £ ely) ¥+ ny) 1) (45)
where
5 -1 Q * Q *
g(y) = vy (Ng-N,) [NE)DE)—-———- N_D, <T + ] (46)
4 -1 Q* Q*
aly) = P00 [0 (S + %) - 1D, 2| (¥7)

We have used the fact that N<5 is approximately constant. Again,
for cylindrical geometry the equation (45) applies if we replace
X° by (K'/r)g. The differential equation (45) was written down
by Markowitz4 and he assgerts that its solution is elther difficult
or impogsible., In fact (45) is easily solved in several ways.

One method of solution consists in recognizing that the term

-é% {g(y)N} of (45) is small compared to-§§ (h(y)) unless N is

close to N Because of this fact we can treat the term arising

5"
from-%§ (g N) as a perturbation and write N as a series:

(o]

M(3,t) = ) n(™) () " (48)

n=0o

where N<O) 18 the initial hydrogen distribution. Inserting the

series (48) into (45) and equating equal powers of t on both sides

ylelds recursion relations for the higher functions N(n).
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(0)
n(1) oLk g wdlgy + n(9) %3% +%§ Né} (49)

N(n) l{f_zé «{g dN(n-’l) + N(I’l-l) dg} n > 2 (50)

aiine-anih U - T
In all cases of practical interest the series (48) appears to con-
verge very rapidly. The first two terms on the right side of (48)
correspond, very nearly, to the approximate solution for the two-
phase region given by Sawatzky(3).

An exact solution of (45) not involving an infinite
series can also be given and is used in the computations described

below. To derive the solution we define a new function H(y,t) to

replace N(y,t) and a new variable, z, to replace y:

H(y,t) = (Ng + Ngh) (51)
and
= - v dy’ (52)
’ fyl (v)° &(y')

where ¥q is an arbitrary point, e.g., the hot end of the two phase

region at t = 0. Then (45) reduces to

dH 2 2 G _ .2 dH (53)
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We change variables again in the following way

u = th + z
5 (54)

K™t - =

<
!

in terms of which (53) may be written

Consequently H(u,v) must be independent of v but it may be an
arbitrary function of u. The arbitrariness is removed by the

initial condition. For t = O we have

H(y,0) = [N(O)g + Ngh] (56)

where N(o) 1s the initial hydrogen concentration. By meansg of

the transformation (52) we can write
H(y,0) = 5(z) (57)

where S(z) is the initial value of H as a function of z. Accord-

ing to (54) and (55), however, at all later times we must have
H(y,t) = S(z + K°t) (58)

and, from (51),
N(Y;t) = gul [H(y:t) - hN5]
(59)

= g1 [8(z4+K°t) - hN ]

which completes the exact solution.
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The only computational difficulty arises in the
connection between z and y, given by (52) which must be in-
tegrated-numerically. The function g may have a singularity
in which case the principal value of the integral in (52) must
be taken. For cylindrical geometry the only change in the above
procedure is to change K2 to (K')2 everywhere and to multiply
the integrand on the right side of (52) by v,

The practical application of the above method is
illustrated by means of Fig. 4 which shows h, g, and z plotted
against y. The values of z shown on Fig. 4 were obtained from
(52) by numerical integration for a choice of y1, in (52) of
(8OOOK)51. To obtain N(y,t), for a given y,t, from a given init-

ial hydrogen distribution N(o)(y) we first look up the value of

z corresponding to y. We then augment z by th, to z"' = z + Kzt,
and look up the value, y", corresponding to z". From (57) we get
s(z + k2¢) = 5(z") = 8% (") g(y") + n(sy") N, (60)
vielding
1 1"
N(y,t) - g<y ) N(O)(y”) + N5 h(Y) [ih(y ) - l:} (61)
g(y) g(y) L n(y)

Knowing y,y" we merely need to look up the values of g and h at

both points and to look up N(O) at y" in order to obtain N(y,t).
The second term on the right side of (61) is always

positive. To prove this, for example, we obsgerve, from Figure 4,

that h/g 1s negative for T > 480°K. However, since h increases
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monotonically with T and z decreases monotonically with T

(T > 480°) we have [h(y")/h(y)] < 1 so that the whole term is
indeed positive. A similar proof may be given for temperatures
below 480°K. Most of the increase in the hydrogen concentration
arises from this term in (61). For moderate hydrogen concentra-
tions this second term corresponds very closely to the approxi-
mate solution of Sawatzky. The first term contains modifications
in the solution arising from the presence of hydride in the two-
phase region.

The dominant features of the kinetics of hydrogen
diffusion in o+6 Zircaloy-2 are the tendency of the hydrogen con-
centration to increase everywhere in the two-phase region and the
impossiblility of achieving zero-current anywhere in the two-phase
region. By choosing N(O)(y) to be an appropriate function of y
it is possilble to have the concentration at y decrease initially.
This is not typical. For example, for a distribution which is

initially constant we find, independent of the constant value

N(y,t) = N(O)(y) t >0 (62)

Consequently, either a net hydrogen current flows into the two-

phase region or the size of the two-phase region shrinks with time.

In the two phase region the hydrogen current for

linear geometry, is given by

I(y) = Kle(y) N(y,t) + h(y)N,] (63)
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If we wish to have a zero current at y we find

J(y) = 0 = K(g N + hNé) (64)
or N = - hNé/g (65)

a result which also holds for cylindrical geometry. However 1t
is obvious from Fig. 4 that the concentration - hNé/g is every-
where unphysical. Above 480°K it lies above Nss below 480°K 1t
1s negative. In particular no boundary with zero current can
eiist for a two-phase region. Even if a hydrogen current is fed
into the samble in order to maintain a two-phase region at the
boundary the current J will have to vary with time, as N varies,
precisely so that (63) is satisfied. In general, therefore, a
two-phase region will not exist at the boundary of a sample. If
it exlsts there initially it will immediately begin shrinking
from the boundary. Even more, because zero current in the two-
phase region cannot be attained, anywhere, for any hydrogen dis-
tribution in the two-phase region, the equilibrium distribution
attained at large times by a sample with no hydrogen current at
its boundaries cannot possibly contain a two-phase regilon.

It is interesting to note the simple way in which
the temperature gradient enters into the exact solution (see
equation (59)). If a calculation 1s made for a definite value
of K and t and if we choose a new temperature gradient, K" the
original solution will now hold for a new time t" such that

(Kn)2 £ th.
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Figure 5 shows calculations of the two-phase hydro-
gen distribution made with (61) for K = 100 deg/cm. and t = 10,
30 and 100 days (or, more correctly, for Kzt = 105, 3% 105 and
106 (deg./2 days/(cm)g). The gain in hydrogen distribution is
plotted against temperature for an initial constant concentration
which is small (N(o) = 0 in (61)) and for n(o) . 5000 p.p.m. All
the computed curves are compared withones obtained with Sawatzky's

simple model. The constants used in the calculations are

Ny = 1.6 x 1O4 p.p.m., Na(o) = 8.5 x 104 p.p.m., AH/R = 3820°K,
(o) _ -3 .2 _ o * o o)

D, = 2.17 x 107~ cm“/sec, Q /R = 4170°K, Q, /R = 30157K,

Dé(o) = 1.09 x 1073 em®/sec, Qs /R = 5730°K, Q,°/R = 653°K.

It is quite evident from the figure that Sawatzky's
model is quite accurate for all moderate concentrations (say
N < 1000 p.p.m.). At higher concentrations two kinds of devia-
tions from Sawatzky's approximate result occur. The first, which
18 most important, is the reduction of the alpha phase diffusion
caused by the presence of hydride. This purely geometric effect
is seen on the figure at high temperatures where the hydride con-
centration 1s largest. At the lowest temperatures shown on the
figure a second effect ~ the actual diffusion in the hydride
phase -~ becomes important, illustrated on the figure by the in-
creased gain of the curve for N(O) = 5000 p.p.m. It 1s quite
possible that at these low temperatures the hydride diffusivity
18 much smaller than assumed on Figure 5 so that the diffusion

in the hydride 1s always negligible,
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More illustrations of two-phase solutions will be
given in the next section in which the redigtribution in the
two~phase region and the single-phase reglon are treated

simultaneously.
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V  SIMULTANEOUS REDISTRIBUTION IN THE a,6 AND o486 PHASES

A - Qualitative Features Of The Solution

In the last section i1t was shown that zero current
or even a constant current was an impossibility in the a+é phase.
Therefore any sample of Zircaloy-2 which has a temperature grad-
ient will in general have a single phase region at its hot boun-
dary. For example, if we take a sample whose initial hydrogen
concentration is everywhere larger than terminal solld solubility
and if we prevent hydrogen from flowing into the hot end of the
sample then an a-phase region begins to develop at the hot end
from time t = O onwards.

The non-zero current at the cold end of the btwo-phase
region is taken care of by the continuing deposition of solid
hydride there. Consequently any sample containing a region of
a+6 phase will involve both a region of &-phase only and a region
of a-~phase only. The proper description of the kilnetics of the
diffusion process for such a sample must then take the redistri-
bution in all three regions into account simultaneously. In
general the interfaces geparating the three regions will change
wlth time. Before developing a detailed treatment of the re-
distribution of hydrogen in all three regions simultaneously we

discuss a few of its qualitative features and of the inter-
face motion.

The a,a+6 interface will, in general, move toward
the cold end of the sample. The reason for this fact 1s the fol-

lowing. The hydrogen current on the a+dé gide of the 1nterface is
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negative (i.e. hydrogen flows toward the cold end) and large
(except for large hydride concentrations 1t is roughly equal to the
solid=solution current, Ja’ augmented by the steep gradient of
the terminal-solid-solubility curve). On the other hand, in the
single-phage region the distribution decays rapidly into the
lowest eigenfunction which has a small current everywhere, even
at the interface. In general the slope of the single-phase hy-
drogen distribution at the interface will be much smaller than
the slope of the terminal-solid-solubllity curve so that the hy-
drogen'current flowling into the interface from the a-phase will
be much smaller than the hydrogen current flowing from the inter-
face into the two-phase region. Hydrogen conservation at the
interface can be accomplished only by the motion of the interface
toward the cold end with the accompanying transfer of the hydride
at the interface into the a+d region.

Because the hydrogen concentration in the two-phase
region increases with time everywhere and because the a+d,a
interface moves toward the cold end the hydrogen concentration on
the two-phase side of the interface will, in general, be larger
than terminal solid solubility, Na' On the single-phase side of
the interface the concentration is Na' Therefore a discontinulty
in the hydrogen concentration exists at the interface. Moreover
the discontinuity grows with time. The o+6,a interface motion,
the concentration discontinuity at the interface, and the contin-
ulng growth of the two-phase region were the fundamental features

of Sawatzky's approximate treatment of the thermal diffusion of
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hydrogen in Zircaloy-=2. These features also occur in more exact
treatment. They arise from the simple properties of the generagl
two-phase diffusion equation. The detailed calculation of the
hydrogen redistribution to illustrate these features is carried
out below. It should be emphasized that the existence of a+6,a
interface motion and of the hydrogen discontinuity there rely on
the assumption of constant equilibrium between the a and & phases.
If the equilibrium is not instantaneous the discontinuity may not
be infinitely sharp. For simplicity the calculations carried out

below always assume phase equilibriunm.

If a hydrogen current flows into the hof end of a

ZircalojFE specimen then the motion of the (a,a+d) interface can
be approximately stopped. As was shown in section III (see Fig. 3),
the single-~phase region has an equilibrium solutlon with constant
current flowing through it. If we choose Jo’ of (40), so that the
singlébphaSe current at the interface 18 equal to the two-phase
current there then the interface will no longer move. As Fig. 3
shows this condition requires that both the slope and the value
of the hydrogen distribution on the a~phase side of this inter-
face are approximately the same as those of the terminal-solid-
solubility curve. (The correspondence is exact for zero hydride
concentration on the two-phase gide of the interface.) The JO of
Fig. 3 achieves this condition. However, as the hydrogen concen-
tration in the two-phase region buillds up the two-phase current
changes slightly and Jo would have to be adjusted appropriately
with time to fix the position of the interface.

It is possible to have a hydride layer at the hot end of

the sample if the hydrogen current there is large enough. Thus if
the hydrogen pickup yields a slope of N greater than the the slope
of NO at the hot end, a hydride layer will develop there.
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The deposition of hydride at the cold end of a
Zircaloy-2 specimen leads to a hydride layer of increasing thick-
ness. Eventually the a+6,6 and a+d,0 interfaces will merge and
no two-phase region will exist. Of course hydrogen redistribu-
tion will also occur in the hydride layer. However, this redis-~
tribution occurs very slowly and will be ignored in the calcula-
tions given below., With this approximation, the ultimate fate
of a hydrogen distribution in a Zircaloy-2 specimen with Temper-
ature gradients is the formation of a solid-hydride layer at the
cold end together with a zero current o-phase distribution in the
remainder of the specimen.

If the slow d-phage redistribution were considered
the final equilibrium distribution would have zero current in
both the hydride layer and the a-phase region. . Zero cufrent in

the hydride layer implies a distribution of the form
N =4 e (66)

in the hydride layer. Moreover such a zero current hydride layer
has a finite thickness because the concentration at both boundar-
ies is either fixed or limited. At the 6,a interface the concen-

tration, N(T,.), of the hydride phase will be determined by the

o)
requirement of equilibrium with the solid solution phase. At
the outer cold surface of the 6-phase the hydrogen concentration,
N(T3), is limited by the maximum amount of hydrogen which can

occur in the dé-phase. The maximum amount, in p.p.m., 18 no more

than 25% larger than N(Tg).
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From (66) we find

T, = Tg [1 +.§§§ In <§é¥§%>}ul (67)

from which the finite thickness, d, of the hydride layer is found

to be

RT32 fn [N(T,) /N(T5) ] (68)

K(Qg* + RT3 fn [N(Tg)/N(T3)]

In problems involving the redistribution of a two-
phase region we do not need to take redistribution in the d-~phase
into account because of the small diffusivity of the &-phase.

The two-phase region disappears long before any substantial re-
distribution in the dé-~phase occurs. Therefore we can assume that
the hydride layer at the cold end of the two-phase region contin-
ues to grow even if the hydride layer exceeds the limiting thick-
ness d at the time when the two~phase regilon has just disappeared.
The ultimate thickness, d, to which the hydride layer attains at
much larger times will be determined by the effective hydrogen
pressure of the medium in contact with the surface.

The maximum hydride thickness, (68), may be of
great practical importance for problems in which hydrogen enters
the Zircaloy-2 specimen from the cold surface. Then N(TB) is de-

termined by the hydrogen pressure of the gas in contact with the
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surface. At no time, under these conditions, can the thickness
of the hydride layer exceed d. For example, non-defected fuel
rods expoged in a reactor for a long time will never become
completely hydrided 1f the origin of the hydrogen is at the
cold surface and i1f the thickness of the Zircaloy-2 sheathing
18 larger than d.

In part B of this section methods are derived for
solving the general problem of the simultaneous redistribution
in the a and a+d reglons. Parts C and D give approximate solu-
tions valid for small and large times respectively. The final
part, E, applies the solutions to varlous observed hydrogen dis-
tributions and shows the effect of the diffusion kinetics on the
measurements of the a-phase heat of transport.

B = General Solution of the o and a+d Eguations and of the
Interface Motion

Because the entire two-phase region shrinks with
time the solution for it can be given without reference to the
single~phase region. The build-up of hydrogen concentration in
the two-phase region is given by (61); and the two-phase hydro-
gen current by (3). With the known two-phase current at the
Interface we must use hydrogen concentration at the boundary to
solve simultaneously for the motion of the boundary and for the
distribution of hydrogen in the single phase region.

To determine the redistribution in the single~
phase region while the boundary, Voo i1s moving we use the
"Fourier series" method developed in section III. However we

can no longer bulld the eigenfunctions with a zero-current
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boundary condition at Voo The most general boundary condition
which is suitable for the construction of a complete set of

Qrthonormal functions is

I
W
(O
\O

[dN%/dy]/Nk

y':yg

where B is a constant. Without a boundary condition of this
form the orthogonality condition, as proved in Section TIII,
(29) and (30), would not hold. The zero-current boundary con-
dition (21) corresponds to the special choice of the logarithmic
derivative, (B = Qa*/R)' Other choices of B will correspond to
non~-zero current at the boundary. However, as the boundary, Yo
moves toward the cold-end there is a net flow of hydrogen from
the single~phase region and hence a non-~zero current at Vo
B(yg) 1s chosen to be equal to [dN/dy]l/N at Yo+« As y, changes
with time we must adjust B(yg) to correspond to the change of
the single-~phase current at the interface. The boundary con-
dition, B(yg) depends implicitly on the time through its depen-
dence on Vo - The evaluation of B for each Yo will accompany
the general solution. At the hot end, Vs of the single-phase
region we assume the zero-current time~independent boundary
condition used in section IIIg.

We write the hydrogen distribution in the single

phase region as

N(y,t) = 3, A(6) N, (3, B, 3,) (70)
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where each N, is a solution of (20) which depends parametrically

A

on B and on Yo both of which are functions of the time. Because
the dependence on time through B and Yo is only parametric the
orthogonallty condition (22) and the completeness of the set of

functions, Nk’ holds as before and the weight function is still

given by (3
no longer g
must find A

equation (1

2). However, the solution for the f

~-E. T

iven by a,e “A7, where a

A A

A
5).

is a constant.

unctions Ak(t) is

Rather we

(t) by substituting (70) into the single-phase

Making this substitution we obtain

dN dy
S, =l N, + S, A A2 = = 5 Ay B, N, (T1)
At dt Al AT Jyg at dB Ef AL
Multiplying both sides by N%f and integrating we find
dA dy
A 2 dB
i S SR S (Sm\' GIAREVY 'af’6> (72)
where
v danN
2 Al
s ___f 2 N,f dy (73)
AN! vy dy2 A
and
v an
B P Al
T ‘f B N T (74)
yl C
Both S%%' and‘Txx, as well as the elgenvalues EA are functions

of Io and B.
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To complete the solution we s8till need to satisfy
two conditions at yge .The first condition states the fact that
at the interface the single phase concentration is equal to fter-

minal solid solubility, i.e.

N(y,) = N, (v,) (75)

(75) must always hold if the interface is moving toward the cold
end. The second condition states the conservation of hydrogen at

the interface and may be written
J(E) - J(l) - [N(E) — N<l)] v

_ (2 . N,) (k7,) 1 dyp
where J(g) is the two-phase hydrogen current, (64) at Yoo J(l)
18 the single~phase hydrogen current, N(g) the hydrogen concentra-~
tion on the two-phase side of the interface, N(l) the hydrogen
concentration on the single-phase side of the interface and v the
velocity of the interface.

Together (76), (75) and (72) can be solved for the
time dependence of Voo B and the set of functions AX' We begin
by expanding each of these functions as a Taylor series 1n an

appropriate time variable. We define
w= th (77)

where m will turn out to be 1/2 or 1, depending on whether or
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not the initial hydrogen concentration at the hot end of the

specimen is below or above terminal-solid-solubility. Then we

write
y, =25 v, WP (78)
B =3, p(n) n ('79)
Ay = 3 AK<H) W (80)

The first term in each of (78), (79) (80) can be found indepen-
dently of the differential equation (72) or of the two conditions
(75), (76) at y,. Thus ye(o) is the intersection of the initial
hydrogen distribution with the terminal-solid-solubility curve.
The value of B(O) is derived in the next part of this section
where the initial motion of the interface is considered. We

find each AK(O) from the initial distribution, N(O)(y) in terms

of the eigenfunctions N, (y, y2<o), B(o)) derived from (20):

A

AK(O) =fy2 w0 (5) N, (¥, ye(o), 5(0)) £(y) ay (81)
1

The boundary condition (76) gives us yg(l) from B(O). Now the
differential equation, (72), is used to give Ax(l) in terms of
yg(l), 5(9) ana the AA(O), Pinaily B(1) 1s obtained from (72).
The steps are repeated to obtaln the higher coefficients in the
Taylor's series, (78), (79) and (80) - taking care in each step to

retain all the necessary powers of w in each of the equations at

each stage. Although the process 1s messy i1t is straightforward.
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The initial conservation of hydrogen at yg(o), as
expressed by (76) determines whether w is tl/2 or t. Thus, in
general, the left hand side of (76) will have a finite value,
initially. The lowest order of (K yEE)Ml is, of course,
[K(yE(O))EJMl which is also finite. TIf N(E)(yg(o)) - Na(y2<o))
as wlll happen if the initial hydrogen distribution cuts across
the termina1~solid»solubility curve then, for small times,
[N(Q) - Na] will be proportional to w. On the other hand dye/dt
is initially proportional to g1 according to (77). If wt™ L
is to be finite in the limit as t — O then m must be 1/2 and
therefore w is t%. When the initial hydrogen concentration lieg every-
where above N_ then (@) _ N ] is finite as t — O so that w = .

The general solution developed in this part is

used in part D below to establish the validity of an asymptotic

golution valid for large times.

C = Initial Single-Phase Solution and Interface Motion
When N(Q)(yg) is initially larger than Na(yg) [e.g.
when the initial hydrogen concentration, even at the hot end, is
above terminal solid solubility] then the initial solution is
simple: the interface velocity is finite and is given by (76).
In this section we explore the more interesting case
where the initial constant hydrogenbconoentration, N(O), bisects
the terminal solid solubllity curve, that is Nq(y3)<N<O)<Na(y1),
where y3 is the temperature of the cold end of the specimen.
As was pointed out in the preceding part the initial velocity of

the boundary is infinite for this case, or more precisely, v is
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proportional to t 1/2q The infinite velocity arises from the
simultaneous continuity in the value and discontinuity of the
slope of the solid solution concentration. For y > Vo the solid
solution concentration is initially Na’ for y < Vo it is N(O).
In iInvestigating the initial infinite veloclity of the interface
arising from this discontinuity we are, of course, carrying the
assumption of equilibrium between solid solution and hydride to
an extreme. We do so, however, to keep the model of the presgent
raper mathematically consistent.

Because the first derivative of the solid-~solution
concentration is discontinuous at ye(o) the second derivative
must become infinite at yg(o) in the limit t — O, Therefore we

can approximate (15) by

aN ., A2 4N
IF M6 Z{"e' (82)

Y

where
62~ k2 p ' (83)
a ’ _ - (0)
=3

in which 92 18 treated as a constant. This latter approximation

is Strictly valid only very near to yg(o) - Initially the region
in which the second derivative tends to infinity is arbiltrarily

small so that all functlons other than N can be treated as con-
stant. [For Zircaloy-2 however, an approximation similar to (82)

is valid over more extended regions. If we write N = HG as in
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Section III then G satisfies (82), approximately, in the entire
single-phase region, as wag shown by the discussion preceding

equation (37)].
acy (
If —5 tends to infinity, atyLyQ

dy2

power of y then higher derivatives approach infinity even more

O)as any negative

rapidly. Hence we can take derivatives of (82) to obtain

d [a°oN 2 g 4N
T |2 2 | (84)
dy dy dy

A particular solution of (84) which has the appropriate properties

at the discontinuity 1is given by
‘ 0 2
172 =(y-y,(00) /u0%s (85)

where s is an arbitrary constant. It is easlly verified that
(85) satisfies (84) and, moreover, dgN/dy2 given by (85) tends to
Iinfinity at yg(o) as t = 0. We obtaln the hydrogen concentratica

N, from (85) and (82) by one integration.

>
N = ° oOL/\t (g1)~1/2 e‘(y“yz(o)) /He%tt g, (86)
O

Again it is easily verified that (86) satisfies (82). One can
also show that the slope of (86) is discontinuous in the limit
y-ﬁ’ye(o), t = 0. However the hydrogen concentration (86) is

finite and continuous. Thus the solution (86) has all the re-

duired properties. The value of s 1s determined simultaneously




with the interface velocity from the discontinuity in the solid
solution concentration at the interface.

Figure 6 shows the qualiltative features of the
initial solution in the immediate neighbourhood of yz(o) for
infinitesmal times. The interface, Voo between the single phase
and two phase regions moves along the terminal solid solubility

curve, N_, with a velocity proportional to t_l/2

(0) _ , (1) (1/2 (87)

At Yo the slope of N has a value, B(o) N(O)

, Which is constant
and intermediate between the slopes of N(O) and Na' Because of
our assumption of equilibrium between the two phases the hydride
between ¥, and ygo disappears. For y > Vo the hydrogen concen-
tration remains approximately fixed at N(O) because the increase
in concentration in the two~phase region is initially proportional
to €, not to tl/2 so that the initial motion of the interface all
takes place before any substantial increase of N in the two-phase
region can occur. Total hydrogen conservation takes place over
the whole sample, not in the infinitesmal region near y2<o).
Although the slope of N at the interface does not change the de-

©

parture of N from N7 gpreads rapidly with increasing time as the
figure shows.

The connection between B(O)N(O) and ¢, can be found
by integrating dgN/dyg from y' to y, where (yz(o)my')>>(492t)l/2.

If we recognize that dN/dy |y' approaches zero for an initially

constant hydrogen distribution we can write
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fyg QE% ay = (0)y(0) (88)
y! ay

On the other hand, we find, from (85)

(0)
(0),.(0) Y2 a2 N (=92 77) Ly /ne2y
B\WIN\Y) o a m-—-7— d (89)
fyl v f e Y

= (coeevl/Q) E (y (l)/ee)

2

where

E(x) = ng/QL/‘X e"'Z2 dz (90)

1s a well tabulated function. The boundary condition (76)

yields a second relation between B(O)N(O) and y2(1), namely

2 Q*
e, () + nz, O] - 10, 1, (01 w(®) [5(0) . ]

(91)

AH

-2 2
Ay (r,(0) 1 1,1 1y,

of =

Together (91) and (89) can be solved simultaneously for B(O>-
(1)

and Vs .
To illustrate the calculation of the initial motion

we take an initial hydrogen concentration of N(o) = 130 p.p.m.
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Then the interface occurs initially at 59OOK, using the same
constants for Zircaloy-2 ag in Fig. 1. The simultaneous solu-
tion of (89) and (91) yields an initial motilon of the inter-

fface given by

: y2<1) = 4.82 x 1077 (sec) /2 (deg)™?

After one day this motion if it continued unchanged,‘would take
the interface to a temperature of 544°K. However the g=1/2
velocity is probably no longer accurate for times as long as
one day. As we shall see in the next part the later motion of
the interface is considerably slower.

The methods of the present part give the correct

initial motion of the interface,which 1s required to begin the

general analysis of the motion as described in the preceding part.

D -~ Interface Motion and Single-Phase Solution for Large Times

In part B it was shown that for the case of a moving

boundary both the normal modes,N., and thecorresponding elgenvalues,

2\
EK’ depend parametrically on V5 and therefore on the time. The
non-zero value of the single-phase hydrogen current at the in-
terface has the effect of raising the value of each of the
elgenvalues from that which holds for zero current at the inter-
face. The increase in the eigenvalues 1s limited - if we call

Ex the eigenvalues for zero current and E', those for any finite

A
current the following relationship can be shown to hold

A S ES S B (92)
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When the interface is moving the terms in (72) con-

and T give rise to a "feeding" of each normal

taining S%A‘ A\ !
mode and counteract its exponential decay. However, as (39)
shows, the eigenvalues of the higher normal modes are very large
so 1t might be expected that the very rapild exponential decay
corresponding to these high eigenvalues might overwhelm any
"feeding" which does occur. This expectation forms the starting
point of the approximation to be developed here,

We assume that for large times the terms in (72)
containing SA%' and Tk%' may be neglected and that only the |

lowest normal mode of the single phase region needs to be re-

trained, that is
N(y,t) ~Aj N (v,y,) = A H(y) G (yfyg) (93)

where H(y) 1s defined by (25). Now, from the boundary condition

(75) we find

AO = Na(yg)/H(yg) GO (y2:y2) (9)4.)

The differential equation (72) is approximated as it was for
(93), to obtain

dA

I = "B A (95)

O

However, according to (94) -




- 46 - CRT-~1049

aA H(y,) N, (95)
- 2/ a4 (Ma\Y2 d L
3 = A {Ng(yg) 7 (H7,7) * %olTeve) wE g (YQ’VQJ o

0

The approximate eigenfunctions of Section III may be used to show
that the last term in the square bracket is negligible. The ap-
propriate approximate form of Go for thils demonstration is

simply:

G, ~ ¢, cos k (y—yl) (97)

Where N is a normalization coefficient (dependent on yg) and

ko is determined below. The eigenvalue, EO, is related to ko by
2 y .o o2
E, » K" D, v ki (98)

where Day4 is again regarded as a constant, as in the derivation

of the approximate eigenfunctions. Combining (95) and (96) we

find
. H(y,) 4 [Na(yg)} dy, dy, (99)
- Ry = P
O Na(ygf dy2 H(yg) at dt
Q, + Q¥
» - 1 1 a a _ A
where P = 53-2- - 5 <——-——-—~—-R > -——R ( lOO) |

p depends so slightly on Vo for Zircaloy-2, that we may regard
it as a constant.

A second connection between Eo and dyg/dt is found
from the boundary condition (76) which expresses hydrogen con-

servation at Voo For simplicity we approximate the two-phase
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current J(g) by neglecting both the hydride current and the

hydride volume. Hence we have, for the right side of (76)

(2) _ (1) =[y2 D <§g% __%g ]y -y, (101)

where N is the single phase concentration given by (93) and (94).

Therefore

s(2) _ 5(1) =(?2 DN, <? _ éL'"a§>] (ioe)

Equating the right side of (102) to the right side of (76) we

obtain
aa dy -
- —é’— ——5'597 = =D + € —d'TD'g (Day4K) * (103)
o v =7, |
B
= -p e =2 (D7 'K)7 o (a0)
where '
(2)
A y,) |
€ = [ m————ie = 1 (105)
N, (¥5) |

depends on the ratio of the two-phase concentration and the

single-phagse concentration at the interface. Finally we evaluate

—Go~1 dGO/dy with the approximate eigenfunction (97) to obtain
x *
ko tan k_ (yg-—yl) =D -€ —@ (106)
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This result, with the value of p known from (100), glves us X,
in terms of ¢ and y,-y;. Fig. 7 shows the value of ko(ygayl)
as a function of both of these parameters.

To determine at a time t the value of Vo and ko
arising from an initial constant hydrogen distribution N<O) we
proceed in the following way. We choose a value of Yo and then
use the methods of section IV to determine N(g)(y2) and hence €.
From the known value of e and of y,-y; We then find ko(yg-yl) from
Figure 7. Having found ko we can next determine the total hydro-
gen concentration 1ln the sample by integration. We check this
value of total hydrogen against the initial total hydrogen.

The procedure is repeated for different Yo until self-consistency
in the total hydrogen is attained. The corresponding values of
Vs and ko give the asymptotic solution. The next part gives
exéﬁples in which the asymptotic solution is calculated.

It remains to be shown that the approximations made
in deriving (93 and ©5) are valid for large times. If the approx-
imate normal modes (37) are used the evaluation of Sxx' and TM\l
18 quite simple. We have used this method in a number of cal-
culations which show that the neglected terms are indeed small.
The results of these calculations can, perhaps, be summed up in
the following way: the approximations made in the asymptotic
solution are valid for times such that tEl >> 1. This result
is also very plausible. For Zircaloy-2 tEl will generally be
greater than uﬁity in a small fraction of a day so that the

asymptotic solution is usually valid within a day or two.
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E -~ Comparison of the Calculated Distributions with Data

The asymptotic gingle-phase distribution calculated
in the preceeding part has a very plausible behavior. It differs
from the distribution with zero current everywhere in the follow-
ing way. Becausé the interface moves toward the cold end and
because the single-phase concentration at the interface, Vo is
equal to N@(Vg) ~ and therefore decreasing continuously - the
amplitude of the zeroth normal mode decreases continuously. This
decrease implies a hydrogen curfent which builds up from the hot
end to the interface Vo - the current building up gives an in-
creasing éurvature to the hydrogen distribution. In the solution
this curvature is contained in the term cos ko(y—yl). The zeroth
normal mode, (97), is in fact approximately equal to the Zero—
current disfribution multiplied by cos ko(y;yl). Figure 7 shows
that for a wide range of interface positions and two-phase con-
centrations the "curvature factor" at the interface, cos ko(y2~y1)
has a wvalue hear 0.5. The curvature of the hydrogen distribution
from its zero current value pergists for a long time - much longer
than the timé in which a sample containing ohly the sgolld solu-
tion phase, as in Fig. 1, requires to reach its final distribution.

Figure 8 shcws a comparison of the calculated hydro-
gen distribution with data of Sawatzky4. The data are for a 34
day anneal of a 2;5 cm. sample of Zircaloy-2 whose end tempera-
tures were maintained at 4030K and 75OOK respectively. The ini-

tial hydrogen concentration was 130 p.p.m. As already pointed
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out by Sawatzky, this sample clearly shows both a two-phase

and a single-phagse region separated by a moving interface at

which the hydrogen concentration is not continuous. The com-

puted curve indicated by the broken line was obtained with the

usual constants, given on page 27. In Sawatzky's paper3 a

better fit to the same date was found with a lower value of Qa*'

‘At the low hydrogen concentrations of Fig. 7 the effect of the

hydride on the diffusion in the two phase region can be neglected.
The dotted curve shown on Fig. 8 does not fit the

data very well -~ largely because it implies a larger increase

in the two-phase region than is observed. The gain in concen-

tration of thé two-phasgse region can be reduced only by decreasging

N D or Qa*‘ As shown below we belleve that Qa* has a value

a’ Ta

very close to 6 x 103 k-cal/mole. The situation with regards to
Na and Da is not so certain. We must remember that the tTempera-
ture region of the two-phage region shown on Fig. 7 1s below that
for WhiQh Na and Da have beeﬁ measured. The data on the figure
suggests that the value of Na should not be reduced -~ the single~
phase concentration at the interface must be equal to Na g0 that
decreaging Na would lower the entire computed curve in the single
phase region. The so0lid curve on the figure was computed with
all the constants the same as for the broken curve, except for
Da(o) which was reduced by a factor of two. The agreement of
this curve with the data 1s quite good. It seems quite possible

that measurements of the kind shown on Fig. 8 could be used to

obtain values of Da and Na at temperatﬁres below BOOOK.
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The "curvature" of the single=phase solution from
the zero current solution is only slight on Fig. 8 - the value
of cos kO(yg—yl) is 0.84., The sample of the Figure has been
annealed for a sufficiently long time so that the hydrogen dis-
continuity at the interface is very large. The large discontin-
uity, in turn, slows down the motion of the interface and reduces
the "curvature".

When cylindrical geometry is employed the shape of
the two-phase and singie—phase distributions will be very much
different than those corresponding to linear geometry (as on
Fig. 8). Qualitatively the problem is still the same: in gen-
eragl a moving interface will occur and the hydrogen concentration
will be discontinuous at the interface. Fig. 9 shows some measure-
ments of Markowitz (4) employing cylindrical geometry. Data for
three initial concentrations are given and we show on the figure
the computed two-phase distributions corresponding to two of
these. For curve 2 both the approximate two phase distribution
of Sawatzky and our more exact one are given. TUnlike that of
Fig. 8, the two-phase distribution increases with decreasing tem-
perature, an effect which arises entirely from the temperature
dependence of the temperature gradient in cylindrical geometry
(K is replaced by K'/r). It is seen that the computed curve 2
is in moderate agreement wlth the corresponding data. The data
of curve 3 departs from solid hydride concentration much more
rapidly than the computed curve. A slope in the concentration as

steep as that of the observed curve 3 cannot arise from an
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initially constant distribution by diffusion perpendicular to

the axis. Undoubtedly much diffusion along the axis occurs in
Markowltz's samples. Thig effect has not been taken into account
in the computations and will undoubtedly distort our simple re-
sults. Thus the curve labelled 1 on Fig. 9 probably has a
single-phase and a two-phase reglon whose interface 1s not clearly
defined because of longtitudinal diffusion.

The "curvature" of the single-phase hydrogen distri-
bution means that a measurement of the heat of transport, Qa*/R’
from the slope and value of the single phase data will be in
error., As (33) shows, with zero current in the single-phase

region one obtains Qu*/R from the following relationship
Q*/R = d In N/dy (107)

In the presence of a single-phase current and the consequent
"curvature" of the hydrogen distribution (107) no longer holds.

In general one will find
— *
d In N/dy = (QOL /R) off (108)
where the "effective" value of the heat of transport, (Qa*/R)eff

will approach Qa*/R only after the motion of the interface has

become small.

Figure 10 shows a meagurement recently made by one of us

(A.S.)of (Q */R) gpp- The measurement was made by averaging

d In N/dy over most of the single phase region for samples of
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Zircaloy-2 annealed for various times. For each sample the
initial hydrogen concentration was 150 p.p.m., the length was

2.5 om, and the end temperatures were 473°K and 723°K re-
spectively. We have computed the hydrogen distribution of these
samples, including the single-phase "curvature'"., The computed
value of (Qa*/R)eff is also shown on Fig. 10. In order to obtain
the good agreement shown there 1t was again necessary to reduce
Da(o) by about the same amount as on Fig. 8 so that the calcu-
lated positions of the interface colncilded with the observed
ones. Without this adjustment the calculated values of (Qa*/R)eff
would differ from (Qa*/R) even more than is shown. It is quite
apparent from the figure that measurements of the heat of trans-
port made from samples containing a two-phase reglon can give
values which are much too low even when the samples are annealed
for a long time.

The effect of the diffusion kinetics on the logari-
thmic derivative of the single-phase hydrogen distribution may
well account for the discrepancy between various measured values
of the heat of transport. Reported values lie in the range 3 to
6 k-cal/mole. The results of Fig. 10 suggest that 6 k-cal/mole
may be the correct value and show the size of the "error" aris-
ing from the kinetics for typical cases in linear geometry. For
cylindrical geometry the temperature gradient in the single-phase
region is often much smaller so that the effective heat of trans-
port approaches 1ts asymptotic value even more slowly. The "error"

arising from the kinetics will tend to give a heat of transport
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which is too low. So wlll a hydrogen current entering the sample
at the hot end. We have calculated the effect of such a hydrogen
current on the measurement of the heat of transport. For the
samples whose results are given on Fig. 10 the current required

to account for the observed variation of the effectlive heat of
transport is too large -~ it would increase the total amount of
hydrogen in the specimens by a few per cent per day which is not
compatible with the observations. In any case, the kinetics al~
ready account adequately for the experimental results shown on

Fig. 10.
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VI CONCLUSIONS

We have given the thermal diffusion equations for
Zircaloy-2 for a model based on the assumptlion of constant
equilibrium between the o and & phases in regions where both
phases are present. The diffusion equations are solved and the
gsolutions used to describe the kinetics of the diffusion process.
Résults are found for diffusion in the a phase alone, in the
a+d region alone and for caseg involving simultaneous redistribu~
tion in the two regions.

The case of single-phase thermal diffusion involves

 a second order diffusion equation. Our solution for this case

10 to the ther-

is similar to that previously applied by DeGroot
mal diffusion of gases in gases. The only new feature of our
solution in this case is that we take into account the tempera-
ture dependence of the diffusivity.

For the ease of thermal diffusion in the a+é region
the diffusion equation of our model is first order in both time
and position. The dominant features of the solution are two-
fold: (1) the tendency of the hydrogen concentration to increase
everywhere in the two-phase region; (2) the impossibility of zero
current in the a+d reglon making this region essentially unstable.
The two-~phage reglon is shown, in general, to be accompanied by
both an a and a dé-phase region.

Redistribution simultaneously in the a,5 and a+d
regions is dominated by the fundamental features of the two-

phage solution. We show that the qualitative features of the
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redistribution are those given in an earlier paper by Sawatzky3:
(a) the &-phase region at the cold end of the specimen and the
a=phase region at the hot end both grow with time; (b) the
motion of the a, a+d interface is accompanied by the development
of a hydrogen concentration discontinuity at the interface. The
sharpness of this discontinulty is perhaps the only feature of
our results which depends critically on our assumption of con-
stant equilibrium of the two-phases in the a+d region.

The solutions of the thermal diffusion equations are
used to describe observed hydrogen redistributions and appear to
account for these adequately. The influence of the kinetics on

the measurement of Zircaloy-2 parameters is discussed.
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FIGURE CAPTIONS

Figure 1 =~ The calculated change with time of an initially con-
stant hydrogen distribution in the a-phase of Zirca-
loy-2. In addition to the initial distribution and the final
equilibrium distributions curves are shown for a number of In-
termediate times in hours. The curveg correspond to a specimen
with end temperatures of 3000 C and 5OOOC and a temperature
gradient of 80 deg/cm. The exact eigenfunctions of the a-phase
diffusion equation were used in the calculation. The Zircaloy-2

parameters of the calculation are given in the text.

Figure 2 - The calculated change with time of an initially con-
stant hydrogen disgtribution in the a-phase of Zircaloy-2.

The calculations are exactly like those of Fig. 1 except that the

approximate eigenfunctions, (37), were used in place of the

exact ones.

Figure 3 - The calculated hydrogen distribution (solid line) in

a Zircaloy-2 specimen with hydrogen pickup at the hot
surface. In the tWo~phase region (T < 2450) the distribution is
of the kind discussed in Section IV. In the a~phase region
(T > 245°) two hydrogen distributions are shown. The solid line
is a constant current solution, (43), with a current Jo = =1.12 x

10“"21L

p.p.m. cm/sec., such that the slope of the a-phase hydrogen
distribution at the a,a+d interface is equal to the slope of Nu
there. As discussed in Section V the position of the interface

1s approximately fixed under these conditions. For comparison
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a zero-current distribution in the a-~phase (the broken line) is
also shown on the figure. The terminal solid-solublility curve

ig labelled Nag

Figure 4 - The functions used in calculating the hydrogen dis-
tribution in a+d Zircaloy-2. The top part of the
figure gives h(y) and g(y) which are defined in the text. The
bottom part of the figure gives the variable z which is also
defined in the text. The abscissa 1s labelled both in terms

of T°K and in terms of the variable y = 1/T.

Figure 5 -~ The hydrogen gain in a+é Zircaloy-2 for various times
and various initial hydrogen concentrations. The
gain is calculated both by Sawatzky's approximate methcd and by

the more exact methods using (61) and the functions of Fig.lh.

Figure 6 - The calculated change with time of an initially con-
stant hydrogen distribution in the neighborhood of
the a,a+d6 interface of Zircaloy-2 for very short times after t = O.
The initial concentration is labelled N(O). As discussed in the
text, the interface moves with an initial velocity proportional
to t'l/g. Subsequent to t = 0 each distribution has a fixed
slope at the interface. The only change in the two phase region
18 the development of a step in the hydride concentration. The
calculations hold only in the infinitesimal region near the
interface and they are extremely dependent on our assumption of
constant equilibrium between the o and 6 phases in the two-~phase

region.
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Figure 7 -« The "curvature" factor, ko(ygﬂyl), of the a-phase
region of a Zlrcaloy=2 specimen yielding the single~
phase distribution in the presence of a slowly moving a,o+d in-
terface. ko(y2~yl) is given as a function of y -y, and of second
parameter, e (defined in the text) which is determined by the

ratio of hydride concentration to solid selutilon concentration on

the two-phase side of the interface.

Figure 8 - Comparison of the calculated and observed redistribu-~
tion of hydrogen in a specimen of Zircaloy-2. The
measurements (points) were made by Sawatzky with linear geometry
and correspond to a 34-day anneal under a temperature difference
of 130°C -~ 477°C. The initial concentration was 130 p.p.m. Two
calculated curves are shown corregsponding to different choices
of the Zircaloy-2 (o~phase) diffusivity. The solid curve éorres»
ponds to the lower value of Da(o) and is in better agreement with

the experimental points.

Figure 9 - Comparison of calculated hydrogen distributions with
the experiments of Markowitz using cylindrical speci-
mens of Zircaloy-2. The points and solid curves are three dif-
ferent sets of experimental results. The broken and dotted curves
give our calculations for the hydrogen dilstribution. The dotted
curve 2 was calculated by Sawatzky's approximate treatment of the
two-phase region. The broken curves 2 and 3 were obtained with

our more exact treatment of the two-phase hydrogen gain.
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Figure 10 - Effect of the diffusion kinetics on the apparent
heat of transport. The experimental estimates
(points) of Qa* were made from most of the single-phase region
for specimens which began with conditions like that of Figure 8.
The calculated curve (solid line) shows how the single-phase
hydrogen current arising from the diffusion kinetics leads to ,
apparent heats of transport in good agreement with the observed

values. The broken line is the assumed true wvalue of Qa*.
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