
Diffusion in metals: the flux of history

A. A. Howe*1,2

It is 150 years since the first equation was proposed for the rate of flow of a constituent by

diffusion. Alternative equations have been proposed over the years for this basic, underlying flux,

i.e. excluding the various complications that vie to bog down the subject. A brief commentary is

offered on the alternative equations available for this Fick’s first law of diffusion, and their

consequences for the time dependency of local concentration (Fick’s second law) and chemical

interdiffusion of a mutual solution. It is suggested that, while the preferred choice for the flux

equation is rather more debatable than is commonly assumed, the actual differences between the

rival formulations might be rather less than would be expected.
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Introduction
Adolf Fick proposed his famous flux equation in 1855,1

whereby the diffusive flux J of atoms is proportional to
the concentration gradient dC/dx, with the coefficient of
proportionality being the diffusion coefficient D

J~{D
LC
Lx

(1)

Originally, D was considered constant (at temperature)
and thus was taken outside the differential.2 This was an
intelligent guess, copying the format of Fourier’s heat
flux equation. This can be viewed either ‘macroscopi-
cally’ as the steady state solution across a sample with
fixed concentrations on either side, or ‘microscopically’
as the current, local flux at a particular place and time.
Any imbalance in the local fluxes around a particular
point necessarily lead to changes in that local concen-
tration with time, according to Fick’s second law, i.e. for
unsteady state diffusion (see Appendix). As Darken and
Gurry put it: ‘what goes in and does not go out, stays
there.’ (p. 438)2

LC
Lt

~D: L
2C

Lx2
(2)

The present discourse concentrates on the ensuing
variants of this basic flux equation for solid state
diffusion: for a general historical review of the develop-
ment of the subject, the reader is referred to Tuijn.3

Fick’s ‘laws’ proved successful in various areas but with
the arrival of techniques capable of measuring concen-
tration gradients in solids, it became evident that the
data usually diverged from these predictions: concentra-
tion was influencing diffusion over and above the
direct effect of the concentration gradient even in
simple, isotropic systems such as typical metals. Highly

concentrated solutions are necessarily not ‘simple’
concerning descriptions of diffusion, but apparent
effects of concentration were being noticed at fairly
mild concentrations. It was clear that a modified
formulation was required to predict at least a first
approximation of how concentration affected diffusiv-
ity. The accepted formulation was to make the diffusion
coefficient an unknown function of concentration DC.
However, rather than considering it equally as variable
as the concentration and including it within the
differential term, it was deployed as a coefficient
multiplying the concentration gradient in the first law,
and only included within the differential term for the
generation of Fick’s second law from this

J~{DC
LC
Lx

(3a)

;
LC
Lt

~
L DC

:LC=Lxð Þ
Lx

(3b)

There is no real dispute about the generation of the
second law from the first, but the nature of DC and the
first law, i.e. the underlying flux equation, have proved
surprisingly controversial.

One further standard equation will be presented here
as a reminder to the reader, with all further equations,
concerning the arguments, confined to the appendix.
The equations so far are akin to the original analogy of
heat flux, where the material merely serves as a medium
to house this flux. In solute diffusion, particularly
regarding substitutional elements, the medium itself
takes part in the diffusion process. The accepted,
overall diffusivity was devised from those of the
component elements. The flux equation (here in relation
to the equal flux Boltzmann–Matano interface) for a
simple binary system of substitutional components A
and B with an equilibrium concentration of vacancies
becomes4

JAB~{ CADBzCBDAð Þ: dCA

dx
(4)

The controversy referred to in relation to equation (3)
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concerning the nature of DC applies likewise to the
diffusivities of the components A and B in equation (4).

An account of the development of these standard and
the alternative forms will now be presented.

Activity and thermodynamic factor
In 1942, Darken proposed that diffusion might depend
on the gradient of the ‘effective’ concentration, i.e. of the
activity, rather than of the actual concentration per se.5

Thus started a long and sometimes acrimonious debate
that appears to have been swept under the carpet rather
than ever actually settled. His suggestion was essentially
just intuitive, and it did not go down well. The attack in
the recorded discussion was led by Professor Mehl:
‘There is no necessary relation between thermodynamic
quantities and kinetic or rate phenomena.’ However, by
1947, Mehl had changed his mind and, with Birchenall,6

supported this activity gradient formalism, citing experi-
mental evidence from the then best available data for
systems with known thermodynamic and diffusion data
as required to test the proposition. These were Cu–Zn
brass (substitutional) and Fe–C steel (interstitial). In an
intriguing reversal of roles, Darken was vociferous in
counterattack, ‘I would not expect a general relation
between mobility (characteristic of rate) and activity
coefficient (characteristic of equilibrium).’6 Perhaps he
enjoyed the irony, but his counterargument was
itself thermodynamic. He saw the free energy gradient
as being the key. The following year, Darken expounded
this view,7 proposing his now standard ‘thermodynamic
factor’, h (see Appendix), that would adjust the value
for the diffusion coefficient relevant to the case of
infinite dilution D0 to the case of a finite solute
concentration DC. He remarked that similar arguments
were already in existence outside of their metallurgical
remit, notably due to Onsager.8 As before, he was given
a ‘hard time’ for his theoretical ponderings, again
notably by Mehl: ‘It is obvious that the solution to this
problem is to be found in the laboratory and not at
the desk’.7 He was criticised for assigning more
importance to his thermodynamic, phenomenological
approach than to any consideration of mechanism.
Darken’s assailants looked forward to the following
paper, by Hollomon, for a proper assessment of
diffusion. But Hollomon then rescued him from the
onslaught in the recorded discussion, seeing it as an
excellent paper.

Hollomon’s following paper, coauthored with Fisher
and Turnbull,9 considered diffusion in the manner of a
chemical reaction, with the highest energy configuration
of the atom jump, i.e. at the ‘saddle point’, being akin to
the activated complex controlling the rate of a chemical
reaction. Simplification of the resultant equation
required an assumption to be made regarding the
activity coefficient of this ‘activated complex’. Notably,
the flux was proportional to the ratio of the activity
coefficients c in the adjoining lattice sites, to that of the
activated complex. If they were assumed to be propor-
tional to each other, they cancelled out barring a
numerical constant and one obtained Darken’s equa-
tion. If it was assumed that the saddle point had its own,
constant value of c, independent of that in adjoining,
proper lattice sites, the c of the adjacent lattice remained,
and Darken’s thermodynamic factor would therefore

also be multiplied by this c. (For simplicity, the activities
used here have the reference state of infinite dilution
rather than of ideal solution, thereby c tends to unity as
C tends to zero and D tends to D0.) They also pointed
out that this latter result is mathematically identical to
employing the activity gradient formalism of Birchenall
and Mehl. Indeed, from the recorded discussion, it
appears that the activity gradient formalism had come
close to being regarded as standard theory at this stage.
Darken (discussion of Ref. 6) argued that his Onsager
style mobility term is best left without this extra c factor
as standard, leaving the residual variability to be fitted
empirically. Curiously, instead, not only was this factor
left off as standard, but it appeared to grow in status to
the extent that woe betide anyone who dared add this or
any other factor to it.

Darken also proposed the chemical interdiffusion
equation for mutual solution (equation (4)) with the
component Ds varying with concentration (to a first
approximation) according to his thermodynamic factor,
as above.7 (This, and the version of equation (4)
resulting from the ‘extra c’ formulation, are included
in the Appendix.) This presumed the vacancy mechan-
ism, however, that had still not been generally accepted.
The argument over the wayward c factor became unduly
tied up in arguments between him and Mehl over
whether the underlying mechanism was by vacancy
(Darken) or direct exchange (Mehl). Maybe that is the
de facto, though inappropriate, reason for the activity
gradient formalism losing the battle! Guy joined the
fray, on the side of the activity gradient camp, in 194910

and Darken, who had proposed it only a few years
before, was vehement in his attack: ‘a pure postulate’; ‘I
do not believe the postulate has even an approximate
general validity.’ However, in the same recorded
discussion, Wells and Batz conceded that it did fit their
iron–carbon data rather well except at the highest
values. They had recently published very extensive
results for the diffusivity of carbon in austenitic iron
over a wide range of concentration and temperature,11

using the Matano–Boltzmann analysis to derive the
values of DC from non-steady state profiles. Smith was
independently determining iron–carbon diffusivity
data12 by the alternative, steady state method, whereby
different, constant concentrations were maintained
across a specimen during isothermal treatment until
the concentration profile between them stabilised, i.e.
with a constant flux maintained thereafter through the
specimen. He obtained gratifyingly good agreement with
the data of Wells and Batz, and in 1950, likewise pointed
out that the activity gradient formalism (which equates
to Darken’s thermodynamic factor but with an extra
activity factor, see Appendix) was far superior to
Darken’s thermodynamic factor alone. An experimental
comparison against Wells and Batz’s data11 is presented
in Fig. 1,13 with the predictions being fully consistent
with those made by Smith at the time against his own
data.12 With either source for the experimental data,
excellent agreement is obtained with the simple ‘extra c’
formulation right up to 5 at.-% (,1?1 wt-%) before
having to include the various complications associated
with concentrated solutions.

LeClaire accepted carbon in iron as a clear case in
point but went as far as to say that the activity gradient
formalism may be sufficient for all simple systems.14
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However, to cover the general case, he suggested that
one stayed with the simple Fick formalism and made the
diffusion coefficient an arbitrary function of concentra-
tion that fitted the data. Darken did not assume that his
thermodynamic factor covered all the concentration
dependence, and that an empirically fitted mobility term
was likely to be required (though in that case it would be
tempting to follow LeClaire and simply fit a single,
overall diffusion coefficient empirically without incor-
poration of the thermodynamic factor).

The battle, however, appeared to be lost. In 1955, Mehl
appeared rather contrite,15 conceding the vacancymechan-
ism, and employing Darken’s analysis for interpreting
the diffusivities within brass. The thermodynamic factor by
no means accounted for all the concentration dependence,
but that was quoted as the observed, empirical dependence
of the underlying mobilities without even attempting to
see if the activity coefficients helped to explain the
discrepancy. Back in 1942 (discussion in Ref. 5) Darken
had pointed out that the activity gradient formalism
fitted the existing data for brass very well, quoting the
example of a predicted increase in diffusion coefficient
from zero to 20%Zn in alpha brass by a factor of over 7
(7?3 in fact, determined from his quoted equation for the
activity of a5Cexp(0?06C) ). In Mehl’s new data of 1955,
the observed increase over that range was a factor of
around 8, whereas that predicted by the thermodynamic
factor h alone was only a factor of 2?2. No mention of
this was made in the paper. Instead, the remaining
variability after reduction by the thermodynamic factor
was described as how the underlying mobility varies
with concentration, and was left as empirical observation.
In the same year, Resnick and Balluffi did the same,16

again on the classic Cu–Zn system: they referred to
Hollomon’s paper9 where he had pointed out that
Darken’s or the activity gradient formalism were equally
valid solutions, but the reference was only with regard to
the activity data that were included in Hollomon’s
paper; not to assess the alternatives discussed within it. It
almost appears to have been a ‘policy decision’. LeClaire
conceded that: ‘for the few systems for which all the data
are available, the results (i.e. Darken) are quite satisfac-
tory, bearing in mind the difficulties of achieving high
precision in measuring chemical diffusion coefficients.’17

The Birchenall and Mehl activity gradient equation is
now generally viewed merely as an evolutionary side
branch.

It refused to die away completely, however, even if,
for example, in the 1970s Siller and McLellan used it
somewhat surreptitiously18 as their basis for going on to
offer an explanation for the eventual departure from the
activity gradient predictions at very high carbon
contents in austenitic iron.

In 1991, Liu et al. examined whether the improved
knowledge of physics since the time of Hollomon’s 1948
paper9 could now answer the question it asked of
which of the two formulations should be preferred.19

They derived a relatively complicated equation that
showed excellent agreement with the iron–carbon data,
superior to either of these formulations. However, it
can readily be shown that with increasing dilution, their
equation tends to the activity gradient formula rather
than to Darken’s, as does also Siller and McLellan’s.
They disagreed with Siller and McLellan as to the reason
for the departure from the alternative basis at high
concentrations but, although they did not specifically
mention this in their paper, their solution confirms
the alternative as the better first approximation,
perfectly valid to moderate concentration (5 at.-% for
Fe–C).

a activation energy is always a constant increment over
the average energy of the diffusing species on either
side (Darken,2 Manning27), generating flux equations (c),
(d) and (f), see Appendix; b activation energy is always
with reference to an independent, datum level at the
saddle point (Birchenall and Mehl,6 Guy,10) generating
flux equation (b), and also (e) with the implied jump fre-
quency being proportional to c

2 Alternative approximations of the activation energy

and their implications for the flux equation

N experimental data11; D predictions from activity formu-
lation13; & predictions from traditional formulation

1 The effect of carbon concentration on its diffusivity in

fcc-iron at 1000uC13
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Darken was originally criticised but then praised for
offering a treatment that did not invoke or rely on a
particular mechanism. (It appears to the author how-
ever, that this is equally true of the alternative.)
Notwithstanding this, a mechanistic explanation of
Darken’s equation became prevalent in the textbooks;
after all, there must be a valid mechanism associated
with it. This is represented in Fig. 2. The activation
energy that controls the jump frequency was stated to be
modified by the difference between the non-ideal
components of the chemical potentials on the atom
planes either side of the saddle point in question, but
was always a constant increment over the average of
these values on either side: thereby, the overall jump
frequency remains independent of concentration.
Likewise, Birchenall and Mehl’s activity gradient solu-
tion can be interpreted on such a basis, but whereby the
activation energy is given by the difference between a
datum, saddle point energy and whatever the actual
energy was in any plane: thereby the overall jump
frequency varies with concentration, and specifically, by
being proportional to the activity coefficient. (Note: the
diffusion coefficient is usually described in terms of an
Arrhenius equation employing the activation enthalpy
Q, with the temperature independent entropic term
contained within a catchall pre-exponential factor. The
jump probability, however, depends on the Arrhenius
equation with this entropic term still included, i.e. in
terms of the activation energy DG.)

In his own textbook with Gurry,2 Darken rather
understandably kept to his own formulation, although
by this time he appeared much more relaxed about
alternative treatments, happily conceding that the
variability of diffusivity with concentration could not
really be predicted because one simply does not know
the true energy state of the saddle point. He even
remarked (p. 463)2 that the mobility (and thus diffusiv-
ity) appears to be proportional to c in several systems.

Diffusivities or mobilities
In practice now, there seem to be two camps among
those who model diffusive phenomena: those who stick
to Darken and assume his equation is written in tablets
of stone, and those who decry the diffusion coefficient
formulation altogether, using instead the Onsager
mobility formalism. The former tends to be the more
commonly applied, and the latter does not have the
Darken straightjacket, and lets the jump frequency (and
thereby the underlying mobility) vary with concentra-
tion as however is seen fit, very much like LeClaire’s
recommendation regarding the diffusion coefficient.
Indeed, from the commonly accepted definition of the
diffusion coefficient, this should vary directly in
proportion to the jump frequency, and the diffusion
coefficient or Onsager mobility formalisms should be
interchangeable. Moreover, a recognised approximation
for the variation of jump frequency arising from the
Bragg–Williams approximation is that it is very close to
being proportional to the activity coefficient.20,21 The
respective formulae are included in the Appendix, where
it can be seen that for a coordination number (number
of equivalent neighbouring atoms) significantly greater
than unity, which it must be in a simple lattice, the
jump frequency is indeed proportional to the activity

coefficient to a good approximation. Transferring this
knowledge over to the diffusion coefficient formalism,
we see that LeClaire’s comment was probably right, that
the activity gradient formalism is indeed probably the
better one for all simple systems. But, contrary to
Darken’s eventual view that his was just one possible
solution, his formula is generally taken to be the correct
one. Moreover, contrary to Darken again, it is often
assumed that the thermodynamic factor should be
sufficient to account for the concentration dependence
of diffusivity without any additional empirical fitting, to
the extent that various workers have sought other means
to try and explain why his formula falls far short of the
experimental data for carbon in iron.22,23

Diffusion coefficient verses jump
frequency
The Darken formalism is thus by no means written in
tablets of stone as many presume, but there have been
further variants of the standard flux equation to add to
Fick’s, Darken’s and Birchenall and Mehl’s. In an
enigmatic aside in his classic textbook,24 Christian stated
that Fick’s Law should really be written with the
diffusion coefficient within the derivative (p. 349).24

This stems from the definition of the diffusion coefficient
being directly proportional to the jump frequency: the
amount of ‘stuff’ moving must be the product of the
amount of stuff available to move and the rate at which
it does so. Therefore, one would indeed expect the net
flux to depend on how this mathematical product varies
with distance. Some researchers maintain this approach
despite the antipathy of the general community,25,26

usually expanded in terms of the jump frequency rather
than expressed by a diffusion coefficient strictly defined
as being proportional to the jump frequency (which is
what most people assume, anyway). The CdD/dx term
expected from the expansion of this variant of the flux
equation is indeed suggested by the full, (weighted)
random walk analysis of an arbitrary assemblage of
atoms, but several texts claim that this somehow cancels
out, and leaves a drift velocity term CV,27 where it can
easily be shown that V falls short of being dD/dx by a
factor c as above. But, again as above, others have
effectively re-introduced this factor in the Onsager
mobility formalism, and its transfer back into the realm
of the diffusion coefficient formalism means that the
drift velocity V should indeed approximate rather well
to dD/dx.

Darken and Gurry remarked that metallurgists tend
to remain unaware of relevant work in non-metallic
materials.2 With that in mind, this survey’s net was cast
a little wider, and it would appear that debate on the
basic flux formulation has been ongoing elsewhere and
the DC product form receives a more favourable press.
In the field of electron flow in solids,28 Landsberg
addressed the question with his paper: ‘DgradC or
grad(DC)?’ and concluded that: ‘provided one proceeds
in an appropriate and consistent manner, either for-
mulation is permissible.’ He goes on to point out that
‘the mathematical results also hold for atomic flow’.
Collins and Takemori29 however, did not agree. What is
viewed by some as the ‘heresy’, J5–grad(DC), is
declared to be ‘the appropriate generalisation of
Fick’s law’, and the ‘often used’ J5–DgradC to be
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‘inconsistent’. The two formulations cannot generally be
equated simply by particular choices of D. However,
they did concede that if the average jump frequency
between pairs of planes was independent of concentra-
tion, as per Manning27 (and likewise all the general
textbooks introducing atomic diffusion), one does
recover the DgradC form for that special case.

But let us reconsider the activity gradient formalism.
The diffusion coefficient multiplying this gradient term
in this case is simply that pertaining to infinite dilution,
and is therefore necessarily independent of concentra-
tion. Therefore, we could move it inside the derivative
term without upsetting the maths. We know that the
diffusion coefficient houses the jump frequency term,
and we are told that to a good first approximation this
varies in proportion to the activity coefficient. The
activity is just the product of the activity coefficient and
the concentration. Let us ‘detach’ c from C and ‘stick’ it
to the D instead, D as a function of concentration being
that at infinite dilution multiplied by the activity
coefficient (via the jump frequency hidden inside D).
What we then have is the flux given by the derivative of
the DC product. Noting the forgotten c term, this again
becomes a mathematically equivalent representation.

A note of warning should be provided here, because
this equivalence assumes isothermal diffusion. Within a
temperature gradient the author would recommend the
activity gradient formalism as the preferred starting
point, invoking the temperature dependence of c but not
of the Arrhenius expression for the core diffusivity at
infinite dilution. However, there are many further
complications in this case, in the presence of a heat
flux, beyond the scope of this review.

Conclusions
In summary, by noting an approximation for the
variability of the diffusive jump frequency recognised
by those who treat diffusion by the Onsager mobility
formalism, we find that the standard Darken diffusion
coefficient formalism is modified in such a way that it
becomes identical with what are generally viewed as
‘heretical’ equations. It also appears that the debates
were usually acrimonious, hampering proper discussion.
Perhaps we have unearthed a resolution to the 60 year
controversy concerning the formulation of the flux in
simple, ‘textbook level’ systems, but it appears that this
remains highly controversial.

Regarding complicated systems, highly sophisticated
models exist including molecular dynamics and atomis-
tic Monte Carlo that are making great progress.30

However, with these, the flux is a result that can be
inferred from the calculations rather than a formula that
the analyses employ. Most materials scientists, though,
embed the Darken equation within their models that
apply diffusion to their system of interest, rather than
modelling diffusion per se. They assume the mobility
term embedded within the coefficient is independent of
concentration, for simplicity and /or lack of data
otherwise. Generally, they presume this is the best,
simple approximation to make, but from perusing the
literature and the available data, this is far from clear.
Other, similarly simple formulas exist that could actually
serve them better. However, for standard application to
the many problems in materials science involving

diffusion, perhaps LeClaire was right: just use the
simple Fick’s Law with the diffusion coefficient fitted
as an empirical function of concentration, if the
empirical data exist!

Appendix

Alternative equations for the diffusive
flux J

(a) J~{D: LC
Lx

Fick; D is constant, i.e. equal to the value
at infinite dilution D0

(b) J~{Do
: La
Lx

Birchenall and Mehl; a is the activity,
cC, with c as the activity coefficient referred to infinite
dilution: c R 1 as C R 0

(c) J~{Doh:
LC
Lx

Darken; h is the thermodynamic factor,

h~
L ln a
L lnC

~1zC
L ln c
LC

hR1 as C R 0
(Darken allowed the remaining D to be fitted

empirically rather than assuming it constant at D0.)
(d) J~{Do

: LC
Lx

zVC Darken; alternative representation
of (c) with V~{Do

: L ln c
Lx

(e) J~{
L DCð Þ
Lx

Christian, DeHoff; reduces to (d) if
V~{

LD
Lx

and tends to (a), (b), (c) and (d) as C R 0
(f) J~{L:

Lm
Lx

Onsager, Darken; equivalent to (c) if the
jump frequency within L is constant, or with D ‘floating’
in proportion to an arbitrary mobility, L

LR0 as CR0 (L5CD/RT)

The Missing Link:

The jump frequency C~C0 exp ((z{1)cfe=kT)

whereas c~exp(zcf e=kT)

therefore the jump frequency C (and thus D) is
approximately proportional to the activity coefficient c
given that the co-ordination number z is significantly
greater than unity.12 (The concentration cf here is
expressed as the site fraction, e is the nearest neigh-
bour interaction energy, and k is the Boltzmann
constant.) All the above can then be made equivalent,
barring Fick (a).

For D5D0c, (e) clearly equals (b), and noting the
relation dy5y.dlny:

(g)

D0
La
Lx

~D0
La
LC

: LC
Lx

~D0
a

C
: L ln a
L lnC

: LC
Lx

~D0c:h
LC
Lx

it also equates to (c) and likewise (d) with appropriate
insertion of the extra c factor. Equation (f) is similarly
rationalised, with L5L0c according to its constituent c
being proportional to c.

The versions of the second law are obtained simply by
inserting the alternative first laws within the derivative in
equation (3b). Thus, for example, (b) as above leads to

(h) LC
Lt

~D0
L2a
Lx2

Regarding the chemical interdiffusion, Darken’s
treatment7 leads simply to multiplying equation (4) by
his thermodynamic factor h, which has to be the same
for both elements

(i) J~{h CADBzCBDAð Þ: LC
�
A

Lx
Regarding the DC product formulation, the following

equation is derived upon following the same logic as
described for Darken13
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(j)

J~{ CADAzCBDBð Þ: LC
�
A

Lx
{CACB

: LDA

Lx
{

LDB

Lx

� �

As before for the ‘extra c’ or activity gradient formula-
tion, changing the D variables to cD0 terms yields the
Darken expression (i) but with the D terms still being the
products of the constant values at infinite dilution and
the activity coefficients, c.

* When transcribing for dCB/dx, remember this is
minus dCA/dx.
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