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ABSTRACT

This report provides a theoretical background for three constitutive models for a continu-
ous strand mat (CSM) glass fiber-thermoset polymer matrix composite. The models were
developed during fiscal years 1994 through 1997 as a part of the Cooperative Research and
Development Agreement, “Application of High—Performance Computing to Automotive De-
sign and Manufacturing.” The full derivation of constitutive relations in the framework of the
continuum damage mechanics is presented. The developed models have been implemented in
the computer program DYNA3D and have been used for the simulation and impact analysis
of CSM composite tubes. The analysis of simulation and experimental results show that the
model based on strain tensor split yields the most accurate results of the three implemented
models. The parameters used in the models and their derivation from the physical tests are
documented. The input format for the computer program DYNA3D in the framework of

user material model routines is provided.



1. INTRODUCTION

Composites Materials Modeling is a part of the Cooperative Research and Development
Agreement (CRADA), “Application of High—Performance Computing to Automotive De-
sign and Manufacturing” that has been established among Argonne National Laboratory
in Argonne, Illinois; Lawrence Livermore National Laboratory in Livermore, California; Los
Alamos National Laboratory in Los Alamos, New Mexico; Oak Ridge National Laboratory in
Oak Ridge, Tennessee; Sandia National Laboratory in Albuquerque, New Mexico; Chrysler
Corporation; Ford Motor Company; and General Motors Corporation. The terms of the
CRADA can be found in Reference 1.

This report provides technical documentation and a user’s manual for the computer im-
plementation of the constitutive material models developed at ORNL for a continuous strand
mat (CSM) glass fiber-thermoset polymer matrix composite. The models were developed
for the simulation of thin plate and shell composite structures under impact loading. The
overview of the literature and the modeled deformation mechanisms are documented in the
accompanying report.? This report supersedes the working draft CRADA report.®> Chap-
ter 2 gives a short overview of the damage mechanics principles essential to understanding
the developed material models. Chapters 3, 4 and 5 are devoted to the three developed
material models, respectively. The first model, Anisotropic Damage Model, has been devel-
oped for unidirectional fiber composites and has been used mainly as a benchmark for the
two following isotropic models, Hydrostatic Pressure Dependent Damage Model and Damage
Model with Strain Tensor Split. Damage Model with Strain Tensor Split has been shown
to provide the best results in simulation of the deformation of the CSM composite tubes.
The constitutive model chapters are followed by a chapter on crush front modeling which
details the developments on simulation of the progressive material degradation ahead of the
impact zone primarily caused by advancement of interply cracks. However, because of the
difficulties with the experimental quantification and separation of this effect from other de-
formation processes, as well as with the respective theoretical approach, further development
of the crush front model has been directed towards integration of the interply cracking effects

into material models directly. Chapter 7 deals with computational simulations of the various



tube impacts and their comparison with experimental data. Chapter 8 provides the format
and typical properties for the material model implementation in DYNA3D. Conclusions and
recommendations for practical applications to automotive simulations and design are given

in the final chapter.



2. DAMAGE MECHANICS

The structures made of glass fiber-polymer matrix composites show inherently brittle
behavior. The principal mechanism for energy dissipation is formation of internal surfaces
that are associated with the loss of interatomic bonds in the material that is referred to as
damage. Damage mechanics theory models such a behavior by relating defect nucleation
and growth in material to its macroscopic response. The damage in the CSM composites
can be generally observed in the three constituent phases: glass fiber, polymer matrix, and
their interface. Each of the phases has numerous damage mechanisms that may interact with
damage from other phases depending on both intrinsic (material) and extrinsic (geometry,
loading) effects. Modes of damage interaction are difficult to quantify, and a considerable
number of assumptions usually needs to be made to yield a tractable model. The models
developed in this study follow the basic steps of the damage mechanics framework that are
subsequently outlined. The energy dissipation mechanisms in the material are described
by material internal variables, w;, that reflect average material degradation and damage
evolution. Thorough theoretical treatment of damage mechanics can be found in standard
textbooks e.g., Reference 4. Only the main relations will be reviewed here to provide a
complete set of equations for the reader.

One of the first decisions to be made is to choose the equivalency principle for the damage
model. The damaged material state can be described using the equivalency principles that
either: (a) equate the strain state of the damaged and undamaged material, (b) equate
the stress state of the material, or (¢) equate the energy of the damaged and fictitious
undamaged material. The methodology used in this work is based on the strain equivalence
mainly because of its computational efficiency in the framework of explicit time integration
computer programs such as DYNA3D.

Because the nature of deformation and geometry of the structures that are to be modeled,

all of the developed CSM composite models start from the following assumptions:

1. All nonlinear effects of constitutive behavior are attributed to damage. Plastic defor-

mations are negligible.



2. Unloading and reloading do not produce damage in the material.
3. Damage depends on the resulting tensile and compressive states.

4. The model is developed for shell structures for which the state of plane stress is preva-

lent.

Assumptions 1 and 2 restrict the functional dependence of the material’s free energy as
U=V(cw) |, (2.1)

where € denotes a strain tensor and w represents damage descriptors (variables). In the
developed models, the unilateral nature of the damage has been modeled by expressing the
free energy into separate parts that correspond to different damage mechanisms. Therefore,
the energy associated with the particular damage mode, and its evolution, can be easily
identified and derived from Eq. (2.1).

Stress tensor is derived from the free energy as

0V (e,w)
o=—7a - (2.2)

The associated thermodynamics force to damage variables, w, can be defined as

OV (e,w)

Y =
Ow ’

(2.3)

which controls the kinematics of the damage evolution. To account for the nature of irre-

versibility during damage processes, the following criteria for damage evolution are proposed:
9o =R(Y) —r(w) <0, (2.4)

where R denotes the function describing the current damage state and r denotes the damage
strengthening threshold at the current time. Equation (2.4) can be used for modeling the
initiation of the damage as well as initial damage in the material as the result of the material
processing conditions. Equation (2.4) also makes it possible to restrict the damage evolution

to the increased loading only.



To achieve a good numerical efficiency, all the corresponding models have been formulated

as functions of the strain tensor.



3. ANISOTROPIC DAMAGE MODEL FOR
UNIDIRECTIONAL FIBER COMPOSITES

The model was originally developed for modeling of the impact of composite tubes in
References 5-7. The composite is assumed to consist of unidirectional laminae plies. The
damage mechanisms that lead to material failure have been identified in References 5 and 8.
These mechanisms are matrix cracking transverse to fibers, transverse matrix crushing, fiber
breakage, fiber buckling, and matrix failure in the fiber direction. These damage modes are
modeled using three independent damage variables, w, w1, and wy, for the direction parallel
to the fibers, direction transverse to the fibers, and shearing in the plane of the laminae,
respectively.

The strain energy for these damage mechanisms can then be written in the following

form:

1
v = % [(1 — wH)E”e%l + (1 — wH)(l — wL)(VglEL + V12E||)611622 + (1 — wL)E”eé]

+2(1 — w,)Ges, (3.1)

where
c=1—1—-w)l —wi)rere , (3.2)
vieky = E vy (3.3)

indices || and L denote the values in the direction parallel and transverse to fibers, re-
spectively. Indices 1 and 2 denote the principal coordinate directions. Symbols E, G, and
it denote the Young’s modulus, shear modulus, and the Poisson’s ratio of the undamaged

laminae, respectively. The stress-strain relation of the damaged ply can be written in the



standard form using Eq. (2.2) as

011 (]_ —w”)E” (]_ —w”)(l —wL)VglEL 0 €11
oz (= | (I—wp)(l —wi)r:E) (1-wi)EL 0 €92
O12 0 0 c(1 —wy)G €12

(3.4)
Following Eq. (2.3) the thermodynamic fluxes associated with the damage variables can

be defined as
ov B E)

Vj=——=—4 1-— 2 3.5
I dwy  2¢2 e + ( Wi )Vig€n)” (3.5)
8\11 EL 2
Y, = —a = @ |:622 + (1 — W||)V21611:| " (36)
ov
V= —5—= 2Ge}, . (3.7)
The damage evolution criteria can now be represented in the space Y as a piecewise linear
surface:
Ej)
fN=2p imn=0 (3:8)
E, G
g1 2@)/” +2§}/12—7”J_ =0 y (39)

where symbols X, Y, and S denote the strengths in the direction parallel to the fibers,
transverse to the fibers, and in-plane shear strength, respectively. The subscripts ¢, and ¢
denote the values for compression and tension, respectively.

Neither the thermodynamic fluxes Y nor their rates are directly controllable in a loading
process; therefore, it is reasonable to rewrite the damage criteria in Eqgs. (3.5)(3.7) and the
damage loading conditions in Eqgs. (3.8)—(3.9) by means of strain and strain rates:

By

2X2 [e11 + (1 — wi)visen]” — ri(wy) =0 . (3.10)
c,t

9 =

2

L
c? Y(:Zt

CGYc,t
E. S

gL = {[622 +(1- w‘|)l/21611]2 + [ 612]2} —ri(w)=0 . (3.11)

To solve the loading ambiguity, the loading criteria have been introduced in the following



general form:
. 0g .

which when applied to Egs.( 3.10) and (3.11) becomes:

g = [e11 + (1 —wi)vig€a) €11 + (1 —wi)vig [e11 + (1 — wi)vio€nn] € (3.13)
g1 = (1 —=wy))va {622 + (1 - w||)V21€11] €11
2cGY, ;1
+ [622 + (1 - u)II)7/21€11] €22 + [ CELS,t} €12€12 . (3.14)

The damage loading conditions can be expressed as

g=0and g >0 loading

=0and ¢ =0 neutral loadin
’ ’ i (3.15)
g=0and g <0 unloading

g<0 elastic

The damage evolution is based on Weibull distribution of defect strength, Reference 9.
The details of damage mechanics implementation using this strength distribution can be

found in Reference 10. The evolution law as a function of strain is given as

w=1—¢mmma)" (3.16)

where m is the Weibull’s exponent of strength distribution and o,,,, is the ultimate strength
of the composite. The methods for determining m from simple uniaxial tests are proposed in
Reference 8. However, while the determination of the tensile parameter does show a physical
relevance and applicability on a wide range of loadings and geometries, the compression be-
havior for composite tubes, especially in multi-ply configurations, cannot be directly related
to the Weibull’s parameter from the compressive coupon test since the respective deforma-
tion modes are significantly different. This shortcoming is characteristic of all the models

presented in this report, and will be addressed in the future work by the development of an



interply cracking model for compression.
The combinations of Weibull’s parameters and required material parameters for different

loading situations are enumerated in Table 3.1.

Parallel to fiber | Transverse to fiber | In-plane shear
01120‘011<0 02220‘022<0 012

w wH W Wg

m mye mjc mi mic M

Omaz Xt Xc th Y; S

€ €11 €22 €12

E E E, G

Table 3.1. Parameters for Eq. (3.16)

The strain rate effect in the material is modeled using viscous regularization of initially
rate-independent damage formulation (see Egs. (3.10), (3.11) and (3.16). In addition, vis-
cous regularization alleviates problems associated with damage localization such as material
softening and discretization sensitivity of the solution. The original formulation of the model
in the Reference 5 uses nonsmooth damage surfaces. Therefore, some standard regulariza-
tion techniques, such as viscous regularization of Perzyna’s type'! that was suggested in
Reference 12, are not suited for this formulation. Instead, viscous regularization of the
Duvant-Lions type!® has been employed in this model because of its demonstrated advan-
tages for application to nonsmooth damage surfaces. The rate-based constitutive equation

is of the form

g=-1(q-q) if >0 . (3.17)

where ¢ denotes internal variables, ¢* is the inviscid solution of rate-independent damage
problem, g, is the the static damage surface, and p is the viscosity coefficient. With the
proper loading and unloading conditions, the generalized Duvant—Lions model renders a
finite and unique solution even in the corner regions of a multifaceted damage surface. The

formulation implemented in this model uses an implicit backward Euler algorithm. By



multiplying Eq. (3.17) by At,, = (t,4+1 — t,) we obtain

At
AQn—l—l = - B
1

(gn1—din) (3.18)
where the subscript n + 1 denotes the current time step. Solving for ¢, yields

_ Gn Tt Atn/(/v“]:url)
n+1 = )
1+ At/

(3.19)

where ¢, is the damage variable solution from the previous step t¢,. The internal variables
used in the model are w), w1, ws, r), and 71 The associated stresses are obtained from
Eq. (3.4). The limits of the instantaneous elasticity and inviscid damage response can be
obtained by using very large and small values for i, respectively. The integration algorithm
proposed previously is unconditionally stable, which makes it suitable for both explicit and

implicit time integration procedures.
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4. HYDROSTATIC PRESSURE DEPENDENT DAMAGE
MODEL

The basis for this model was developed from work documented in References 14-17. The
damage is assumed to be produced by separate influences of deviatoric and hydrostatic stress
components. This formulation models not only the damage—induced change in the elastic
modulus of the material but also the respective variations of Poisson’s ratio. According to
this idea, the strain energy is divided into the deviatoric energy, ¥,, and the volumetric

energy, U,,, as

UV=v,+v, . (4.1)
In the state of plane stress, Eq. (4.1) becomes:

ey |

Uy = (1-wa)G(e €)= (1 - wa)G |e]; + €35 — 3(1—12)

(611 + 622)2 + 26%2 s (42)

G(1+v)(1-2v)
3(1 —v?)

U =1 —wp) (11 + €22)” (4.3)

where € denotes the deviatoric part of the strain tensor. Following Equation (2.2), the stress

relations are given as

[ v —dv+1 ] G(l+v)(1-2v
on = 2(1 —wqg)G _611 - W(ﬁn + 622)_ +2(1 — w) ( 3(1 )_( 7) )(611 +€22)
(4.4)

[ v —4dr+1 ] G(1+v)(1—-2v)
099 — 2(]_ — u)d)G -622 — W(GH + 622)- + 2(1 — wm) 3(1 — 1/2) (611 + 622) y
(4.5)
019 = 2(1 — wd)G612 . (46)

The associated damage fluxes are obtained using Eq. (2.3):
vi—dv+1

Yd =@ 6%1 + 6%2 - W(Gll + 622)2 + 26%2 y (47)

11



G(1 +1v)(1 - 2v)

Yo, =
3(1 —v?)

(€11 + 622)2 ) (4.8)

where wy and w,, denote the deviatoric and hydrostatic damage variables, respectively. Ac-
cording to the second law of thermodynamics, the natural energy transfer is accompanied
by an increase in entropy relative to the original state. In its mathematical form (Clasius-

Duhem’s inequality), this can be written as

® = Yyirg + Voo — 10 > 0 . (4.9)

Inequality of Eq. (4.9) describes the energy dissipated through damage processes. It also
implies that a damage surface exists as g, approaches zero. By introducing the Lagrangian

multipliers into Eq. (4.9), it transforms into

b = ded + mem —rw — )\gw . (410)

The inequality form of the 2nd law of thermodynamics now reduces to the problem of

obtaining the extremum of the function in Equation 4.10, that is,

0P 0 — o - Jg,,
- = wy = ==
Y, T oy,
0P . 090
- _ v = 4.11
oy, 0 = W=\ Y, (4.11)
0P - g,
or 0= w or
Ladaveze'® proposed a damage criterion in the following form:
go =Y+ 7Y, —r(w) , (4.12)
where
Wm
= — . 4.13
r=tn (119

The preceeding equations do not express the unilateral character of the damage process. For

most brittle materials, the tensile state induces significantly more damage in the material.

12



To account for such a behavior, the damage criterion can be modified as
go =Y+ (1)Y, —r(w) (4.14)
where the McAuley bracket is defined as

if o, >0
7y = ¢ Im=T (4.15)
0 if o, <0

and o, is the hydrostatic stress. The physical meaning of Eq. (4.15) is that the negative
hydrostatic stress does not contribute to damage evolution.
Using the notation similar to plastic flow relations, the damage evolution can be charac-

terized as follows.
1. Damage evolution rule:

29

i = A2 = A
i Yy ’
_ 00y
W = )\aYm =(T)\ . (4.16)
2. Damage hardening rule:
\ agw
— \Zdw
or ’
dr dr .
= — =) 4.1
" ow Ow (4.17)
3. Damage loading and unloading rule:
g, <0, AZ0 , A, =0 (4.18)

Conditions in Eq. (4.18) are expressed in the standard Kuhn-Tucker form and describe
the unilateral character of the damage evolution. If g, < 0, then the damage criterion in

Eq. (4.18) implies that A = 0; hence, the damage evolution rule in Eq. (4.15) implies that

13



wg = wp, = 0, and no further damage is incured. If A > 0, that is, if further damage occurs,
the condition in Eq. (4.18) implies that g, = 0. Therefore, the damage surface separates the
damaged from the undamaged state. Since the damage surface is smooth, the damage viscous
regularization of Perzyna’s type can be used. The particular structure of the regularization
proposed in Reference 11 has been used in the model. The rate equations governing linear
viscous-damage behavior are obtained from the rate-independent form by replacing r by r.

The regularization of the damage variables can be then written as

= , 4.19
. (4.19)
: dw .
Wa = T (4.20)
Wm = (T)Wg - (4.21)
Thus, if the damage takes place,
gy = Yd,n-l—l + <T>Ym,n+1 —r, >0 . (422)

Applying the implicit backward Euler algorithm from Eqs. (3.17)—(3.19) to Eq. (4.21) yields

At, At,
Tpnil = Tp + T.Qw,n—l—l =T, +

(Yd,n—l—l + <T>Ym,n+1 - Tn-i—l) . (423)

Finally, the rate form of the damage evolution is

rn + Atn//u (Yd,n+1 + <T>Ym,n+1)

o = , 4.24

Tl 1+ Aty /1 (4.24)
dw

Wdnt1 = Wdn+ %(TnJrl —T) (4.25)

Wmn+l = Wmn + <7_> (wd,n+1 - wd,n) . (426)

Equation 4.26 has two indications: (1) as g — 00, Tpy1 — Ty thus, weni1 — wa,, and
Wmnt1 — Wmpn. Hence, no further damage occurs during the increment, and the instanta-
neous elastic response is recovered. (2) As p — 0, 711 — Yani1 + (7)Y nt1, which results

in the rate-independent damage formulation. This shows the properly bounded behavior for

14



the two extreme cases with a smooth transition in between.

The model presented here is based on positive hydrostatic pressure—dependent damage
evolution. For composite materials, both positive and negative hydrostatic pressure may
contribute to damage. This characteristic has been accounted for in the present model by

replacing the McAuley bracket in Eq. (4.14) with

7. if o, >0
(ry = {7 = . (4.27)
— if o, <0

The magnitude of 7, is generally larger than 7_ for most materials.

15



5. DAMAGE MODEL WITH STRAIN TENSOR SPLIT

The previous two damage models were implemented into DYNA3D'? code and were used
for simulations of the CSM composite tube drop-tower tests. Although the two models
have shown encouraging results, in general they have not yielded a satisfactory modeling
approach that would easily be applicable to a large span of CSM composite tube geometries
and loading configurations. The deficiencies of these formulations for modeling of the CSM
composites have been analyzed, and directions for further model developments have been
identified. As a result of this effort, a new model based on separation of the compression
and tension effects on damage development in CSM composite materials has been developed.
The concept of the separation of the strain tensor is used to account for two basic tensile and
compressive damage evolution processes. This idea was motivated by work in References 20
and 21. The justification for the new model based on the experimental observations in tube
impact tests and theoretical developments are presented in Reference 2.

The formulation of the model starts from the separation of the strain energy into tension

and compression parts as

4y

— (11— + .
U= (1—-wy)G |(€ .e)—i—l_y

() +(1—w )G (€ )+

m

()] » (5.1)

1—v

where €t and ¢ denote the positive and the negative part of the strain tensor, respectively.
Variables w, and w_ denote the associated tensile and compression damage variables, re-
spectively. The positive part of the strain tensor is obtained by using a positive projection

operator PT, which removes contributions of negative eigenvalues of the strain tensor:
er=P".€ . (5.2)
The negative part of the strain tensor is then

e =P € . (5.3)

16



The projection operators satisfy the following relations:

€ = e—¢€t | (5.4)
P = I-P+ . (5.5)

where I denotes the fourth-order identity tensor and P+ and P~ are symmetric. The pro-
jection operator can be written as

+
P =

v

(SiSy +SiSh) (5.6)

DN =

The symmetric matrix S?° is defined as

3
St=Y()elni@n; || =1, (5.7)

i=1
where ¢; is the principal strains and n; denotes the corresponding principal directions. The

() symbol denotes the Heaviside step function that is used to remove the contributions of

the negative strain tensor eigenvalues:

1 if >0
(x) = ' : (5.8)
0 if z<0

If we now proceed using the Eq. (2.2) in the introductory part of the report, we obtain stress

relations as

21 —w_)G [ _ 7
o= [61+1 + Vﬁfz} t—T [611 + V€22} , (5.9)

2(1 —wy)G 21 —w_)G [ _ -
O92 = ﬁ [65“2 + Vefl} + 1=, [622 + Veu} , (5.10)
012 =2(1 —wy)Gely + 2(1 —w_)Geyy (5.11)

the associated damage forces using Eq. (2.3) are
+ .+ A e
Y. =G|(e":€") . (%) : (5.12)
—v

17



e [(e— Ce) + (6;1)2} . (5.13)

By adopting a damage criterion for each of associate damage variables, damage surfaces

become
gy = %3@ —ry = (%) [(1 —v)et tet + 41/(6:;)2] -y, (5.14)
g_ = %;V)Y_ —r_= (%) [(1 —v)e e + 41/(67;)2} —r_ (5.15)

where X, and X_ are the tensile and the compressive strengths, respectively, and r, and

r_ are the associated damage thresholds. The damage loading criteria can then be written

as
Gr = |6l + vlad(@)eh] én + [eh + vie)edeh] e + 201 = v)ehén (5.16)
g = [61_1 + V<—61><—62>62_2] én + [62_2 + V<—61><—62>61_1] oo +2(1 —v)enén . (5.17)

The evolution of damage variables is governed by the same expressions as for the anisotropic

model, that is,

1 ( 2Get )m+
w=1—e MU : (5.18)
__1 2Ge -
w=1l—-e ™ (“‘”)X*) : (5.19)
where
eF=(1—-v)et et +du(eh)? | (5.20)
e =(1—-v)e e +dv(e,) . (5.21)

A viscous regularization of damage variables analogous to the one for the anisotropic
damage model in Eqs. (3.17) through (3.19) has been used to model the rate dependency of

the material.
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6. CRUSH FRONT MODEL

Crush front model was first introduced in work by Hallquist and Matzenmiller in Refer-
ence 5. Although it is difficult to state all the reasons the authors had for introducing the
crush front, one reason seemed to be a reduction of force that was transmitted along the
length of the tube. If the strength of the elements adjacent to the impact region were not
reduced, the forces could be carried high up the tube where they could induce a catastrophic
failure.

Although at first glance the crush front concept seems to be a numerical gimmick to
obtain a progressive crush, it compensates for structural and material mechanisms that are
present in tube crush. The recent tube studies by ORNL and the Automotive Composites
Consortium (ACC) have shown that the impact zone experiences significant delamination
both between plies (braid) and within plies (CSM). The interply cracks are propagating
ahead of the impact zone and reducing the strength and rigidity of the composite through
instability mechanisms. The compressive strength of a set of delaminated plies is vastly
reduced compared to the uncracked laminate. The iterply cracking effectively reduces the
strength of the material adjacent to the crush zone and provides for a stable, progressive
crush. Therefore, although originally introduced mostly for numerical reasons, the crush
front model can also be used as a mathematical model for progressive tube crush.

An apparent question is how to identify and quantify the crush front model’s parameters.
That question, and the concerns about lumping all the underlying out-of-plane deformation
mechanisms into a single model has caused authors to stop further development on the
crush front, and to incorporate modeling of interply cracking during tube compression into
the constitutive model of material.

In the Hallquist and Matzenmiller model, a new element is enrolled into a crush front
if it shares nodes with a failed element, where an element is considered to be failed if its
characteristic time step falls below the specifed value. Our implementation has two new

improvements:

1. The elements are considered failed if the amount of internal damage reaches maximum

value. This approach is more physically justified and can prevent excessive element
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deformations that are present in Reference 5.

. Nodes have indicators that count the number of failed elements connected to them. The
node information is then used to determine the intensity and propagation of reduction
of material properties ahead of failed elements. This enables a faster crush front
propagation for regions with geometric features that favor crush propagation (e.g.,
corners). Figure 1 illustrates the concept of weighted crush front propagation where a

higher number indicates a larger strength reduction.
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7. NUMERICAL RESULTS

The developed models were implemented in the finite element program DYNA3D and
used for simulation of drop tower tests of tubular CSM components. The tests were perfomed
by ACC and were provided for comparison with simulation models. A typical configuration of
the drop tower test is shown in Fig. 2 The test specimen is fixed on the drop tower beam and
raised to the predetermined height. The beam is then released, and the specimen impacts the
impact plate that is instrumented with a force measurement sensor. The resulting deformed

CSM specimen from ACC test number 4041 is shown in Fig. 3.

7.1. Damage Model for Unidirectional Fiber Composites

This model was primarily used as a benchmark to evaluate the capabilities that were consid-
ered as state-of-the-art in the current literature. The model was used for simulation of tube
impact where it was assumed that the tube was composed on multiple plies of fiber aligned
in either the longitudinal or the hoop direction of the tube. The ACC has not performed
tests with such a tube, and the results presented here are for illustration of the tendencies of
the model behavior. The sequence of deformed shapes for a tube with fibers aligned in the
longitudinal and the hoop directions of the tube is shown in Figs. 4 — 5 and 6 — 7, respectively.
In the case when the fibers are aligned in the longitudinal direction of the tube the corner
cracks propagate well ahead of the impact zone thus changing the tube impact into the im-
pact of four separate fronds. In the case of hoop-aligned fibers, the tube still deforms into
four separate fronds but with very short corner crack advancement. The resulting force on
the impactor plate for both longitudinal and hoop alignments of the fibers is shown in Fig. 8.
This model has a very stable behavior without the crush front model. Previous commercial
implementation of this model required the crush-front model to stabilize tube deformation
and, therefore, introduced an additional parameter that could not be easily determined from

experiments.
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Figure 4. Material 52, Tube Deformation, 0° Fibers
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Figure 5. Material 52, Tube Deformation, 0° Fibers
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7.2. Hydrostatic Pressure-Dependent Damage Model

The hydrostatic pressure-dependent damage model was designed to model the deformation
in CSM tubes by modeling separate influences of the hydrostatic and deviatoric parts of the
stress tensor. All of the model’s parameters were to be determed from experiments. The
lack of experimental data neccessary for model definition and problems with measurement
of damage evolution with increased loading are the main reasons why the model did not
yield suitable results. The material properties for this model were derived from DELSEN

22,23 and are included in Chap. 8. However, the tests were not instrumented

experiments
to the degree that would provide enough information for the necessary model parameters
and, therefore, many of the damage evolution related parameters had to be assumed. The
sequence of deformed geometries for tube impact is shown in Figs. 9 — 10. The resulting force
on the impactor plate for failure damage of w0 = 0.6 and wy,q = 0.9, respectively, is shown
in Fig. 11. The force levels from the simulations are much lower than for the experiment.
Modification of model parameters could substantially improve the results, however, it was

decided not to pursue the development of this model, primarily because of the sophisticated

instrumentation necessary for proper experimental characterization.
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7.3. Damage Model with Strain Tensor Split

The damage model with strain tensor split draws from the successful ideas of the anisotropic
and hydrostatic models. It combines the assumed flaw distribution from the anisotropic
model and energy separation from the hydrostatic model. The results obtained using this
model have shown very good agreement with experimental data for different tube geometries.
However, determining the values for the strength distribution coefficients m_ and m_ requires
some additional comments.

The model splits the deformation into the tensile and the compressive parts. In tension
mode it is reasonable to assume that the material behaves similarly to the coupon test (for
an in-depth discussion of the physical deformation mechanisms in the CSM composites see
Reference 2. Therefore, the range of the tensile m, coefficient is typically in the range of
2 to 4, depending on the value that best approximates tensile coupon stress-strain curve.
Figure 12 illustrates determination of the m_, coefficient based on experimentally measured
elastic modulus and strength of the CSM composite coupon. Measured values are taken
from the coupon test for the material used in tube test 4041.

In the compression mode, however, several concurrent mechanisms reduce the stiffness of
the material (longitudinal intraply and interply cracking, and instability—driven delamina-
tion) and are associated with out-of-plane stresses that cannot be effectively modeled using
the Belytscko-Tsay shell. The average compressive deformation of tube fronds is well above
the values obtained from compressive coupon tests. The developed model can compensate
for these effects by reducing the magnitude of the compresison strength parameter m_ to a
value is typically in the range of 1 to 2. This reduction can also be estimated by assuming
delamination between the plies that is in the range of ply thickness. The exact value is
difficult to determine since, after all, it is only a crude approximation of the effects arising
from multiple out-of-plane deformation modes by in-plane effects and experimental results
show significant scatter. Lower values of m_ result in a more compression—compliant mate-
rial that can sustain larger deformation compared to high m_ values. To keep the allowed
deformation in a realistic range, the total deformation in a finite element was limited by the
maximum amount of total damage in both modes after which the element was removed from

calculation.

34



Simulated progression of the tube impact for drop tower test 4041 using relatively coarse
finite element discretization is shown in Figs. 13 — 16. The view from the impactor plate
shows tearing along the tube corners and continuous inversion of the fronds. To evaluate
the discretization dependency of the model, a much finer finite element mesh was employed.
Simulation results using the fine element mesh are shown in Figs. 17 — 18. The resulting
force traces on the impactor plate for both discretizations are shown in Fig. 19. A very good
agreement between the simulation and the experiment for both finite element discretizations

can be observed.
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Figure 12. Material 53, Determination of m Value from Experiments
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Composite Tube Drop Tower Test
Test 4041, Thick Tube, Coarse Mesh

Figure 13. Material 53, Coarse Mesh
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Figure 14. Material 53, Coarse Mesh, Deformation Sequence 1
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41



CO-7FHEHEE'C = 1} CO-9Ge0FF L = 1}

_____ |
Tt )

: S

PNl |

- 'l
| 11
| L |

SO-2F0000% Y = SO-F2EH6E6'1 =1

as !

o 1T )
N o LY NN
I i

USSIN auld ‘aqnL ¥dIyL ‘T¥Op 191

Figure 18. Material 53, Fine Mesh, Bottom View

42



Force (kN)

24

21+

181

: ‘ ’ '\! ‘“ ({”»“
|

15

12

— Experiment t4041

= Model 53, m,=2, m_=2, coarse mesh —T

= Model 53, m,=2, m_ =2, fine mesh

| K\U‘rﬁ?j’w\

12 16 20 24 28

Figure 19. Material 53, Barrier Force

43

32 36
Time (ms)



8. MATERIAL DATA INPUT FORMATS FOR DYNA3D

8.1. Material 52: Anisotropic Damage Model

The typical material card set for the anisotropic damage model is as follows:

2 52 1.403E-06 2
material type # 52 (user)
* ACC
*23456789+123456789+123456789+123456789+123456789+123456789+123456789+123456789+
*numc numh umcs umbk umsh umsf

40 6 33 21 7 1

14 .40E+06 3.381E+06 3.381E+06 0.0245 0.3 0.0245 5.244E+060.7866E+06
0.7866E+060.1566E+060.1566E+060.6555E+06 3.0 0.5 2.0 0.5
0.5 0.9 0.0 0.0 0.000E+00 0.00OE+00 0.00OE+00 0.000E+00

0.000E+00 0.000E+00 0.200E-07 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
3.000E+00 0.000E+00 0.000E+00-1.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

The first uncommented line contains the material identification number, material type,
and its density. The second uncommented line is not to be changed except for the umcs
parameter which denotes the location of the definition of the coordinate system for fiber
orientation in the following five rows of the material cards. The coordinate system defi-
nition follows the rules outlined in the LLNL DYNA3D manual.?* The parameters in the

uncommented lines 3-7 are given schematically as

Ey, E. Ez wva vy v G Xy
X, Y Y. S myp mype my moye
Ms  Whag 0 0 0 0 0 0
0 0 Aty # 0 0 0 0
0 0 0 0 0 0 0 0

The parameters wy,,,; and At,,;, denote the maximum damage in either mode and the mini-

mum time step for the element, respectively. All other parameters are as defined in Chap. 3.
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8.2. Material 54: Hydrostatic Pressure Dependent Damage Model

The first material card denotes the material identification number, material type, and density
of material. The second line need not be changed. The remaining five lines are organized as

follows:
Ne(w) Iprp v Wmaz T+ T- 1% In

€1 01 €; 0;
ey oy w1
W; Y; e .. WHN YN

0 0 O 0 0 0 0 Atnin

The parameters that were not defined in Chap. 4 are

Ny — number of pairs defining (¢,0) and (w,Y’) uniaxial loading curves
Ip; — material law indicator
0 — elastic—plastic-damage law
1 — elastic-damage law
Wmaz — damage at failure
Iy — hardening indicator
0 — isotropic hardening
1 — kinematic hardening
(0,1) — mixed hardening (plastic law only)

Atypin— minimum time step
A typical material card set for material model 54 is as follows:

2 54 2.151E-06 2
material type # 54 (user)
* ACC
*23456789+123456789+123456789+123456789+123456789+123456789+123456789+123456789+
*numc numh umcs umbk umsh umsf

48 9 0 12 13 1

6.00 1.00 0.32 0.4 1.00 0.00 0.0E-07 0.00
0.00100 1.132E+04 0.00620 6.776E+04 0.00965 1.0376E+5 0.01313 1.212E+05
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0.02082 1.86E+05 0.03000 2.3606E+5 0. 1.132E+1 0.053 4.278E+2
0.073 1.028E+3 0.089 1.884E+3 0.1063 3.422E+3 0.90 4.1415E+4
0.000E+00 0.00O0E+00 0.00OE+00 0.00OE+00 0.00OE+00 0.000OE+00 0.000OE+00 0.000E+00
0.000E+00 0.00OE+00 0.00OE+00 0.00OE+00 0.00OE+00 0.000OE+00 0.000E+00 0.200E-07
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8.3. Material 53: Damage Model with Strain Tensor Split

The first material card denotes the material identification number, material type, and density
of material. The second line needs not be changed. The remaining five lines are organized

following the notation from Chap. 5 as follows:

E v Xy X my m  Woee Atmin
00 o O 0 0 0 0
00 0 0 0 0 0 0
00 0 0O 0 0 0 0
00 0 0O 0 0 0 0
00 0 0 0 0 0 0

where w4, and At,,;,, as before, denote the maximum damage and the minimum time step,
respectively.

An example material card set for material model 53 is as follows:

2 53 1.403E-06 2
material type # 55 (user)
* ACC
*23456789+123456789+123456789+123456789+123456789+123456789+123456789+123456789+
*numc numh umcs umbk umsh umsf
48 12 0 9 10 1
11.0E+06 0.32 0.19E+06 0.22E+06 2.00 2.00 0.99 0.1E-06
0.000E+00 0.000E+00 0.100E-04 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
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9. CONCLUSIONS

This report documents the development of computational models for continuous strand
mat composite tube impact at the Oak Ridge National Laboratory. The models were de-
veloped during fiscal years 1994 through 1997 as a part of the Cooperative Research and
Development Agreement, “Application of High—Performance Computing to Automotive De-
sign and Manufacturing”.

To illustrate the features and capabilities of the developed models, a tube crush exper-
iment was simulated using each of the models. The experimental data were compared to
the simulation results, and the advantages and deficiencies of the models were discussed.
The model based on strain tensor split has shown very good agreement with physical ex-
periments. Computational implementation of the developed models for the computer finite
element code DYNA3D provide a practical platform for numerical simulation and analysis
of impact of automotive composite structures.

The outcome of this research is very encouraging and shows that complex design prob-
lems for glass fiber reinforced composites can be addressed using computational modeling.
These results easily surpass results presented in the current open literature and illustrate the
considerable advancement in the theory of composite deformation achieved in the course of

this project.
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