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Volume Averaged Modeling Formulation in Li-Ion Batteries 

Species Conservation 
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Charge Conservation 

Electrolyte phase: 
 
 

Solid phase: 
 

Closures: 
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Electrode Kinetics 
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Thermal Energy Conservation 

 
 
 

Heat Source: 
 
 
 

Volume Averaged Modeling Formulation in Li-Ion Batteries (2)  
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Note on Solid Phase Diffusion Modeling: 
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Volume averaged approach: Pseudo-2D approach: 

Operator splitting approach: 
*(Wang et al., JES 1998, JPS 2002) 

 Duhamel superposition method 
(Doyle et al., JES 1993, 1994) 

 

 Polynomial approximation 
(Subramanian et al., JES 2005) 

 

 Pseudo steady state approach  
(Liu, Solid State Ionics 2006) 
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Thermal-Electrochemical Coupling 
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Thermo-Electrochemical Modeling in LIBs – Problem Definition  

Assumptions: 
1. Concentrated binary electrolyte 

2. No side reactions 

3. No gas phase 

4. Volume change negligible 

 
ee

eff

Dee

eff

ss

eff

j

n
njsj

j

jesnjsj c
T

U
TiaUiaq  




  ln

Irreversible 

Heat 
Reversible 

Heat 
Ohmic Heat in 

Matrix Phase 

Ohmic Heat in 

Solution Phase 

Thermal Sources: 

*Srinivasan and Wang, “Analysis of Electrochemical and Thermal Behavior of Li-Ion Cells,” Journal of the Electrochemical Society, 150, A98 (2003). 

Initial test case configuration: 
March 09, 2011 Meeting 
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Battery Geometry   

 Co-tabbed and Counter-tabbed design 
 Cooling condition on top surface, adiabatic condition on all other surfaces 

 Geometry and mesh created using CUBIT 
 CUBIT  Geometry and mesh generation toolkit from Sandia (http://cubit.sandia.gov/) 

 Parametric journal file (or Python script) can be used to automate the geometry and 

mesh generation for typical battery configurations 

Co-tab prismatic cell Counter-tab prismatic cell 

*Kim et al., “Multi-Domain Modeling of Lithium-Ion Batteries Encompassing Multi-Physics in Varied Length Scales,” Journal of the Electrochemical Society, 158, A955 (2011). 

http://cubit.sandia.gov/
http://cubit.sandia.gov/
http://cubit.sandia.gov/
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Solution Methodology 

sese cc ,,,

 Zonal segmentation 

 DUALFOIL solves for potential and concentration in the cell sandwich direction 

 AMPERES solves for temperature in the segmented blocks with heat source terms 

calculated from potential and species distributions from DUALFOIL 

 Two-way, loose coupling approach 
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Solution Methodology (2)  
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Thank You! 


